Skip to main content
Log in

Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and l-azetidine-2-carboxylic acid in Hansenula polymorpha

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Hansenula polymorpha is a naturally xylose-fermenting yeast; however, both its ethanol yield from xylose and ethanol resistance have to be improved before this organism can be used for industrial high-temperature simultaneous saccharification and fermentation of lignocellulosic materials. In the current research, we checked if the expression of the Saccharomyces cerevisiae MPR1 gene encoding N-acetyltransferase can increase the ethanol tolerance of H. polymorpha. The S. cerevisiae MPR1 gene was cloned in the H. polymorpha expression vector under the control of the H. polymorpha strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). H. polymorpha recombinant strains harboring 1–3 copies of the S. cerevisiae MPR1 gene showed enhanced tolerance to l-azetidine-2-carboxylic acid and ethanol. The obtained results suggest that the expression of the S. cerevisiae MPR1 gene in H. polymorpha can be a useful approach in the construction of H. polymorpha strains with improved ethanol resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilera F, Peinado RA, Millán C, Ortega JN, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110(1):34–42. doi:10.1016/j.ijfoodmicro.2006.02.002

    Google Scholar 

  2. Batt CA, Caryallo S, Easson DD Jr, Akedo M, Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28(4):549–553. doi:10.1002/bit.260280411

    Article  CAS  PubMed  Google Scholar 

  3. Cabeca-Silva C, Madiera-Lopes A (1984) Temperature relations of yield, growth and thermal death in the yeast Hansenula polymorpha. Z Allg Mikrobiol 24:129–132. doi:10.1002/jobm.19840240216

    Article  Google Scholar 

  4. Chi Z, Arneborg N (2000) Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. J Ind Microbiol Biotechnol 24:75–78. doi:10.1038/sj.jim.2900769

    Article  CAS  Google Scholar 

  5. Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143(Pt 5):1649–1656. doi:10.1099/00221287-143-5-1649

    Article  CAS  PubMed  Google Scholar 

  6. Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE. 3(7):e2623. doi: 10.1371/journal.pone.0002623

  7. Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165–173. doi:10.1111/j.1567-1364.2007.00289.x

    Article  CAS  PubMed  Google Scholar 

  8. Du X, Takagi H (2007) N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75(6):1343–1351. doi:10.1007/s00253-007-0940-x

    Article  CAS  PubMed  Google Scholar 

  9. Faber KN, Haima P, Harder W, Veenhuis M, Ab G (1994) Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet 25:305–310. doi:10.1007/BF00351482

    Article  CAS  PubMed  Google Scholar 

  10. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508. doi:10.1126/science.1121416

    Article  CAS  PubMed  Google Scholar 

  11. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953. doi:10.1007/s00253-006-0827-2

    Article  PubMed  Google Scholar 

  12. Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104:911–919. doi:10.1002/bit.22457

    Article  CAS  PubMed  Google Scholar 

  13. Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8(7):1167–1174. doi:10.1111/j.1567-1364.2008.00429.x

    Article  Google Scholar 

  14. Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268. doi:10.1016/S0065-2164(00)47006-1

    Article  CAS  PubMed  Google Scholar 

  15. Jiménez J, Benítez T (1987) Adaptation of yeast cell membranes to ethanol. Appl Environ Microbiol 53(5):1196–1198

    PubMed  Google Scholar 

  16. Kimura Y, Nakamori S, Takagi H (2002) Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast 19(16):1437–1445. doi:10.1002/yea.927

    Article  CAS  PubMed  Google Scholar 

  17. Lloyd D, Morrell S, Carlsen HN, Degn H, James PE, Rowlands CC (1993) Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast 9(8):825–833. doi:10.1002/yea.320090803

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  19. Lucero P, Peñalver E, Moreno E, Lagunas R (2000) Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol 66(10):4456–4461

    Article  CAS  PubMed  Google Scholar 

  20. Mansure JJ, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta 1191(2):309–316

    Article  CAS  PubMed  Google Scholar 

  21. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412. doi:10.1128/MMBR.00025-07

    Article  CAS  PubMed  Google Scholar 

  22. Nomura M, Nakamori S, Takagi H (2003) Characterization of novel acetyltransferases found in budding and fission yeasts that detoxify a proline analogue, azetidine-2-carboxylic acid. J Biochem 133(1):67–74. doi:10.1093/jb/mvg003

    Article  CAS  PubMed  Google Scholar 

  23. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134(2–3):121–127. doi:10.1111/j.1574-6968.1995.tb07925.x

    Article  CAS  PubMed  Google Scholar 

  24. Ramezani-Rad M, Hollenberg CP, Lauber J, Wedler H, Griess E, Wagner C, Albermann K, Hani J, Piontek M, Dahlems U, Gellissen G (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 4(2):207–215. doi:10.1016/S1567-1356(03)00125-9

    Article  CAS  PubMed  Google Scholar 

  25. Rosa MF, Sá-Correia I (1991) In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol 57(3):830–835

    CAS  PubMed  Google Scholar 

  26. Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotelerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164. doi:10.1016/S1567-1356(03)00146-6

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  28. Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11(6):2357–2364

    CAS  PubMed  Google Scholar 

  29. Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152(1):11–15. doi:10.1111/j.1574-6968.1997.tb10402.x

    Article  CAS  PubMed  Google Scholar 

  30. Shichiri M, Hoshikawa C, Nakamori S, Takagi H (2001) A novel acetyltransferase found in Saccharomyces cerevisiae Sigma1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J Biol Chem 276(45):41998–42002. doi:10.1074/jbc.C100487200

    Article  CAS  PubMed  Google Scholar 

  31. Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71(12):8656–8662. doi:10.1128/AEM.71.12.8656-8662.2005

    Article  CAS  PubMed  Google Scholar 

  32. Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761–5772. doi:10.1128/AEM.00845-09

    Article  CAS  PubMed  Google Scholar 

  33. Thompson A, Gasson MJ (2001) Location effects of a reporter gene on expression levels and native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae. Appl Environ Microbiol 67(8):3434–3439. doi:10.1128/AEM.67.8.3434-3439.2001

    Article  CAS  PubMed  Google Scholar 

  34. Wada M, Okabe K, Kataoka M, Shimizu S, Yokota A, Takagi H (2008) Distribution of l-azetidine-2-carboxylate N-acetyltransferase in yeast. Biosci Biotechnol Biochem 72(2):582–586. doi:10.1271/bbb.70534

    Article  CAS  PubMed  Google Scholar 

  35. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803. doi:10.1021/bp990107u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Prof. M.J. Penninckx (Laboratoire de Microbiologie de l’Université Libre de Bruxelles c/o Institut de Recherché du CERIA, Brussels, Belgium) for providing S. cerevisiae Σ1278b (α wild-type MPR1 MPR2 AZC R) strain. Access to the H. polymorpha genome database was kindly provided by Rhein Biotech GmbH (Düsseldorf, Germany). This work was supported in part by Archer Daniels Midland Co., Decatur, IL, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Sibirny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishchuk, O.P., Abbas, C.A. & Sibirny, A.A. Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and l-azetidine-2-carboxylic acid in Hansenula polymorpha . J Ind Microbiol Biotechnol 37, 213–218 (2010). https://doi.org/10.1007/s10295-009-0674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0674-0

Keywords

Navigation