Skip to main content

Advertisement

Log in

Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We assessed fungal diversity in deep-sea sediments obtained from different depths in the Southern Ocean using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA by metabarcoding through high-throughput sequencing (HTS). We detected 655,991 DNA reads representing 263 fungal amplicon sequence variants (ASVs), dominated by Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Chytridiomycota and Rozellomycota, confirming that deep-sea sediments can represent a hotspot of fungal diversity in Antarctica. The community diversity detected included 17 dominant fungal ASVs, 62 intermediate and 213 rare. The dominant fungi included taxa of Mortierella, Penicillium, Cladosporium, Pseudogymnoascus, Phaeosphaeria and Torula. Despite the extreme conditions of the Southern Ocean benthos, the total fungal community detected in these marine sediments displayed high indices of diversity and richness, and moderate dominance, which varied between the different depths sampled. The highest diversity indices were obtained in sediments from 550 m and 250 m depths. Only 49 ASVs (18.63%) were detected at all the depths sampled, while 16 ASVs were detected only in the deepest sediment sampled at 1463 m. Based on sequence identities, the fungal community included some globally distributed taxa, primarily recorded otherwise from terrestrial environments, suggesting transport from these to deep marine sediments. The assigned taxa included symbionts, decomposers and plant-, animal- and human-pathogenic fungi, suggesting that deep-sea sediments host a complex fungal diversity, although metabarcoding does not itself confirm that living or viable organisms are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All sediment samples analyzed in this paper are stored in the Laboratory of Microbiology at the Universidade Federal de Minas Gerais.

References

  1. Sallée JB (2018) Southern Ocean warming. Oceanography 31:52–62

    Article  Google Scholar 

  2. Ogaki MB, de Paula MT, Ruas D, Pellizzari FM, García-Laviña CX, Rosa LH (2019) Marine fungi associated with Antarctic macroalgae. In: Castro-Sowinski S (ed) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Nature, Switzerland, pp 239–255

    Chapter  Google Scholar 

  3. Dickinson I, Goodall-Copestake W, Thorne M, Schlitt T, Ávila-Jiménez M, Pearce D (2016) Extremophiles in an Antarctic marine ecosystem. Microorganisms 4:8

    Article  PubMed Central  CAS  Google Scholar 

  4. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Acad Natl Sci USA 95:578–6583

    Article  Google Scholar 

  5. Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of 563 the Central Indian Basin. Deep Sea Res Part I Oceanogr Res Pap 53:14–27

    Article  Google Scholar 

  6. Burgaud G, le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  7. Redou V et al (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  9. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takami et al (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  11. Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163

    Article  Google Scholar 

  12. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  PubMed  Google Scholar 

  13. Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces. PLoS One 2:e56335

    Article  CAS  Google Scholar 

  14. Zhang X, Tang GL, Xu XY, Nong XH, Qi SH (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ogaki et al (2020) Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 4:227–238

    Article  CAS  Google Scholar 

  16. Gonçalves VN, Campos LS, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831

    Article  Google Scholar 

  17. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066

    Article  Google Scholar 

  19. White TJ et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  20. Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]. https://github.com/najoshi/sickle

  21. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson II MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abarenkov K et al (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE community. https://doi.org/10.15156/BIO/786386

  25. Kirk et al (2011) Dictionary of the Fungi10th edn. CAB International, Wallingford, p 784

    Google Scholar 

  26. Tedersoo et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  27. Hammer et al (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  28. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) An interactive Venn diagram viewer. BMC Bioinform 15:293

    Article  Google Scholar 

  29. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  30. Vaz AB et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laich F, Vaca I, Chavez R (2013) Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 63:3884–3891

    Article  CAS  PubMed  Google Scholar 

  32. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  33. Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR, Rodrigues A, Sette LD (2019) Fungi from admiralty bay (King George Island, Antarctica) soils and marine sediments. Microb Ecol 77:12–24

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  CAS  PubMed  Google Scholar 

  35. Medinger R et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS One 8:e56739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giner CR, Forn I, Romac S, Logares R, de Vargas C, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    Article  PubMed  Google Scholar 

  39. Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, Bruce K, Drakare S, Hänfling B, Kahlert M, Leese F, Meissner K, Mergen P, Reyjol Y, Segurado P, Vogler A, Kelly M (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205

    Article  CAS  PubMed  Google Scholar 

  40. Ruisi et al (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  41. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  42. Rosa LH, Zani CL, Cantrell CL, Duke SO, van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, Ecology and Biotechnological Applications. Springer, Cham, pp 1–18

    Chapter  Google Scholar 

  43. Tosi S, Casado B, Gerdol R (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Article  Google Scholar 

  44. Carvalho CR et al (2020) Fungi associated with the biosphere of the bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in Antarctica. Polar Biol 43:545–553

    Article  Google Scholar 

  45. Rosa LH, de Sousa JRP, de Menezes GCA, da Costa Coelho L, Carvalho-Silva M, Convey P, Câmara PEAS (2020a) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Article  Google Scholar 

  46. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichenosphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  47. Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Article  Google Scholar 

  48. Gomes EC et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  PubMed  Google Scholar 

  49. Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  CAS  Google Scholar 

  50. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, S Junior PA, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Article  Google Scholar 

  52. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR, Barbosa EC, Oliveira JG, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  53. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

  54. da Silva TH, Silva DAS, de Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH (2020) Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 24:565–576

    Article  PubMed  Google Scholar 

  55. de Menezes GCA, Amorim SS, Gonçalves VN, Godinho VM, Simões JC, Rosa CA, Rosa LH (2019) Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms 7:445

    Article  PubMed Central  CAS  Google Scholar 

  56. de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, Murta SMF, Simões JC, Cota BB, Rosa CA, Rosa LH (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376

    Article  PubMed  Google Scholar 

  57. Rosa LH et al (2020b) DNA metabarcoding high-throughput sequencing of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep in press

  58. Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52

    Article  CAS  PubMed  Google Scholar 

  59. Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS (2013) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105:237–252

    Article  CAS  PubMed  Google Scholar 

  60. Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  61. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  62. Krishnan A, Alias SA, Wong CMVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542

    Article  Google Scholar 

  63. Rosa LH, Almeida Vieira Mde L, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  64. Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  65. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic. Microb Ecol 67:775–787

    Article  PubMed  Google Scholar 

  66. Moller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Article  Google Scholar 

  67. Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    Article  CAS  Google Scholar 

  68. Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, Hemández-Restrepo M, Jaklitsch WM, Lebrun MH, Schumacher RK, Stielow JB, van der Linde EJ, Vilcāne J, Voglmayr H, Wood AR (2015) The genera of Fungi - fixing the application of the type species of generic names-G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6:163–198

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raghukumar C, Samir DR, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptations. Bot Mar 53:479–492

    Article  Google Scholar 

  70. Hu F, Schmidt K, Stoyanova S, Zengzhi L, Gräfe U, Hamburger M (2002) Radical scavengers from the entomogenous deuteromycete Beauveria amorpha. Planta Med 68:64–65

    Article  CAS  PubMed  Google Scholar 

  71. Rodríguez MA, Cabrera G, Gozzo FC, Eberlin MN, Godeas A (2011) Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. J Appl Microbiol 110:1177–1186

    Article  PubMed  Google Scholar 

  72. Schwentke J, Sabel A, Petri A, König H, Claus H (2014) The yeast Wickerhamomyces anomalus AS1 secretes a multifunctional exo-β-1,3-glucanase with implications for winemaking. Yeast 31:349–359

    Article  CAS  PubMed  Google Scholar 

  73. Schütte UME, Henning JA, Ye Y, Bowling A, Ford J, Genet H, Waldrop MP, Turetsky MR, White JR, Bever JD (2019) Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J Ecol 107:1737–1752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank congresswoman Jô Moraes and the Biological Sciences Institute of the University of Brasilia.

Funding

This study received financial support from the CNPq, PROANTAR, FAPEMIG, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), INCT Criosfera 2. P. Convey is supported by NERC core funding to the British Antarctic Survey’s “Biodiversity, Evolution and Adaptation” Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The collections and studies performed in Antarctic Peninsula were authorized by the Secretariat of the Antarctic Treaty and by PROANTAR.

Code Availability

Not applicable.

Supplementary Information

ESM 1

(DOCX 35 kb).

ESM 2

(DOCX 25 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogaki, M.B., Pinto, O.H.B., Vieira, R. et al. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding. Microb Ecol 82, 157–164 (2021). https://doi.org/10.1007/s00248-020-01658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01658-8

Keywords

Navigation