Skip to main content
Log in

Rigorous analysis of the unified transform method and long-range instabilities for the inhomogeneous time-dependent Schrödinger equation on the quarter-plane

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we report on the discovery of a previously-unknown type of long-range instability phenomenon for the one-dimensional linear Schrödinger (LS) equation on the vacuum spacetime quarter-plane. More specifically, the inhomogeneous LS on the half-line, with generic initial data, boundary conditions and forcing term, is addressed, as an illustrative paradigm of our techniques, in a classical, smooth context via the formula proposed by the linear Fokas’ unified transform method. We, first, present a new and suitable decomposition of that formula in the complex plane in order to appropriately interpret various terms appearing in the formula, thus securing convergence in a strictly defined sense. We also write the solution in a form consistent with the fundamental principle of Ehrenpreis and Palamodov. This novel analysis then allows for the necessary rigorous a posteriori verification of the full initial-boundary-value problem, for the first time. This is followed by a thorough investigation of the behavior of the solution near the boundaries of the spatiotemporal domain. We prove that the integrals in this representation converge uniformly to ‘prescribed’ values and the solution admits a smooth extension up to the boundary only if certain compatibility conditions are satisfied by the data (with direct implications for efficient numerics, well-posedness and control). Importantly, moreover, based on our analysis, we perform an effective asymptotic study of far-field dynamics. This leads to new explicit asymptotic formulae which characterize the properties of the solution in terms of (in)compatibilities of the data at the ‘corner’ of the quadrant. In particular, we found out that the asymptotic behavior of the solution is sensitive to perturbations of the data at the corner. In all cases, even assuming the initial data to belong to the Schwartz class, the solution loses this property as soon as time becomes positive (implying an infinite-speed type of singularity propagation). Hereby, the recent discovery of a novel type of a long-range instability effect for the Stokes equation is further corroborated and elucidated by revisiting a celebrated lower-order linear evolution partial differential equation (PDE). It thence transpires that our rigorous analytical approach is straightforwardly extendable to other Schrödinger-like evolution equations as well as more general problems with dispersion formulated on domains with a quasi-infinite boundary. Finally, although occurrence of the new instability is most stunning in the case discussed herein, it is naturally conjectured that analogous phenomena shall too appear in variable-coefficient and nonlinear settings which remain to be accordingly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. London A 453, 1411–1443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fokas, A.S., Gelfand, I.M.: Integrability of linear and nonlinear evolution equations and the associated nonlinear Fourier transforms. Lett. Math. Phys. 32, 189–210 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fokas, A.S.: Lax pairs: A novel type of separability (invited paper for the special volume of the 25th anniversary of Inverse Problems). Inverse Probl. 25, 1–44 (2009)

    Article  Google Scholar 

  4. Fokas, A.S., Pelloni, B.: The solution of certain IBV problems for the linearized KdV equation. Proc. R. Soc. Lond. A 454, 645–657 (1998)

    Article  MATH  Google Scholar 

  5. Fokas, A.S.: On the integrability of linear and nonlinear partial differential equations. J. Math. Phys. 41, 4188–4237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fokas, A.S.: A new transform method for evolution partial differential equations. IMA J. Appl. Math. 67, 559–590 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ashton, A.C.L.: On the rigorous foundations of the Fokas method for linear elliptic partial differential equations. Proc. R. Soc. Lond. A 468, 1325–1331 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Fokas, A.S., Spence, E.A.: Synthesis, as opposed to separation, of variables. SIAM Rev. 54(2), 291–324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deconinck, B., Trogdon, T., Vasan, V.: The method of Fokas for solving linear partial differential equations. SIAM Rev. 56, 159–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fokas, A.S., Pelloni, B.: A method of solving moving boundary value problems for linear evolution equations. Phys. Rev. Lett. 84, 4785–4789 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fokas, A.S., Pelloni, B.: Two-point boundary value problems for linear evolution equations. Math. Proc. Camb. Phil. Soc. 131, 521 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fokas, A.S., Kapaev, A.A.: On a transform method for the Laplace equation in a polygon. IMA J. Appl. Math. 68, 355–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fokas, A.S., Schultz, P.F.: Long-time asymptotics of moving boundary problems using an Ehrenpreis-type representation and its Riemann–Hilbert nonlinearization. Commun. Pure Appl. Math. 56, 517–548 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crowdy, D.G., Fokas, A.S.: Explicit integral solutions for the plane elastostatic semi-strip. Proc. R. Soc. Lond. A 460, 1285–1309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Monvel, A.B., Fokas, A.S., Shepelsky, D.: The mKdV equation on the half-line. J. Inst. Math. Jussieu 3, 139–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pelloni, B.: Well-posed boundary value problems for linear evolution equations on a finite interval. Math. Proc. Camb. Phil. Soc. 136, 361–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Antipov, Y.A., Fokas, A.S.: The modified Helmholtz equation in a semi-strip. Math. Proc. Camb. Phil. Soc. 138, 339–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fokas, A.S., Pelloni, B.: A transform method for linear evolution PDEs on a finite interval. IMA J. Appl. Math. 70, 564–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fokas, A.S., Sung, L.-Y.: Generalized Fourier transforms, their nonlinearization and the imaging of the brain. Notices Am. Math. Soc. 52, 1178–1192 (2005)

    MathSciNet  MATH  Google Scholar 

  20. de Lillo, S., Fokas, A.S.: The Dirichlet to Neumann map for the heat equation on a moving boundary. Inverse Probl. 23, 1699–1710 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Treharne, P.A., Fokas, A.S.: Initial-boundary value problems for linear PDEs with variable coefficients. Math. Proc. Camb. Phil. Soc. 143, 221–242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bona, J.L., Fokas, A.S.: Initial-boundary-value problems for linear and integrable nonlinear dispersive partial differential equations. Nonlinearity 21, 10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fokas, A.S.: A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics 78. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  24. Dujardin, G.M.: Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals. Proc. R. Soc. A 465, 3341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalimeris, K., Fokas, A.S.: The heat equation in the interior of an equilateral triangle. Stud. Appl. Math. 124, 283–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fokas, A.S., Pelloni, B.: Generalized Dirichlet-to-Neumann map in time-dependent domains. Stud. Appl. Math. 129, 51–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith, D.A.: Well-posed two-point initial-boundary value problems with arbitrary boundary conditions. Math. Proc. Camb. Phil. Soc. 152, 473–496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lenells, J.: The KdV equation on the half-line: the Dirichlet to Neumann map. J Phys A 46, 345203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mantzavinos, D., Fokas, A.S.: The Unified Method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension. Eur. J. Appl. Math. 24, 857–886 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vasan, V., Deconinck, B.: Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete Contin. Dyn. Syst. 33(7), 3171–3188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fokas, A.S., Pelloni, B. (eds.): Unified Transform for Boundary Value Problems: Applications and Advances. SIAM, Philadelphia (2014)

    Google Scholar 

  32. Sheils, N.E., Smith, D.A.: Heat equation on a network using the Fokas method. J. Phys. A: Math. Theor. 48, 335001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deconinck, B., Sheils, N.E., Smith, D.A.: The linear KdV equation with an interface. Comm. Math. Phys. 347, 489–509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fokas, A.S., Himonas, A.A., Mantzavinos, D.: The Korteweg-de Vries equation on the half-line. Nonlinearity 29, 489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pelloni, B., Smith, D.A.: Evolution PDEs and augmented eigenfunctions: Half line. J. Spectr. Theory 6, 185–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sheils, N.E., Deconinck, B.: Initial-to-interface maps for the heat equation on composite domains. Stud. Appl. Math. 137, 140–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, S.-F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  MATH  Google Scholar 

  38. Tian, S.-F.: Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50, 395204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Deconinck, B., Guo, Q., Shlizerman, E., Vasan, V.: Fokas’s unified transform method for linear systems. Q. Appl. Math. 76(3), 463–488 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fernandez, A., Baleanu, D., Fokas, A.S.: Solving PDEs of fractional order using the unified transform method. Appl. Math. Comput. 339, 738–749 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Fokas, A.S., Wang, Z.: Generalised Dirichlet to Neumann maps for linear dispersive equations on half-line. Math. Proc. Cambridge Philos. Soc. 164, 297–324 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miller, P.D., Smith, D.A.: The diffusion equation with nonlocal data. J. Math. Anal. Appl. 466(2), 1119–1143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pelloni, B., Smith, D.A.: Nonlocal and multipoint boundary value problems for linear evolution equations. Stud. Appl. Math. 141(1), 46–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian, S.-F.: Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Comm. Pure Appl. Anal. 17, 923–957 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Alexandrou Himonas, A., Mantzavinos, D., Yan, F.: Initial-boundary value problems for a reaction-diffusion equation. J. Math. Phy. 60, 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Colbrook, M.J., Ayton, L.J., Fokas, A.S.: The unified transform for mixed boundary condition problems in unbounded domains. Proc. R. Soc. Lond. A 475, 25 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Himonas, A., Mantzavinos, D., Yan, F.: The Korteweg-de Vries equation on an interval. J. Math. Phys. 60, 58 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Batal, A., Fokas, A.S., Özsari, T.: Fokas method for linear boundary value problems involving mixed spatial derivatives. Proc. R. Soc. A 476, 20200076 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hwang, G.: Initial-boundary value problems for the one-dimensional linear advection–dispersion equation with decay. Z. Naturforsch. A 75(8), 713–725 (2020)

    Article  Google Scholar 

  50. Kalimeris, K., Özsarı, T.: An elementary proof of the lack of null controllability for the heat equation on the half line. Appl. Math. Lett. 2, 2 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Johnston, C.M., Gartman, C.T., Mantzavinos, D.: The linearized classical Boussinesq system on the half-line. Stud. Appl. Math. 146, 635–657 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Deconinck, B., Fokas, A.S., Lenells, J.: The implementation of the unified transform to the nonlinear Schrödinger equation with periodic initial conditions. Lett. Math. Phys. 111, 17 (2021)

    Article  MATH  Google Scholar 

  53. Fokas, A.S., Lenells, J.: A new approach to integrable evolution equations on the circle. Proc. R. Soc. A 477, 58 (2021)

    Article  MathSciNet  Google Scholar 

  54. Aitzhan, S., Bhandari, S., Smith, D.A.: Fokas diagonalization of piecewise constant coefficient linear differential operators on finite intervals and networks. Acta Appl. Math. 177, 1–69 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mantzavinos, D., Mitsotakis, D.: Extended water wave systems of Boussinesq equations on a finite interval: theory and numerical analysis. J. Math. Pures Appl. 169, 109–137 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chatziafratis, A.: On the Fokas method for linear evolution PDE on the half-space, Thesis (in Greek), supervisors: N. Alikakos, G. Barbatis, I.G. Stratis. University of Athens (2019)

    Google Scholar 

  57. Chatziafratis, A., Mantzavinos, D.: Boundary behavior for the heat equation on the half-line. Math. Meth. Appl. Sci. 45, 7364–7393 (2022)

    Article  MathSciNet  Google Scholar 

  58. Chatziafratis, A., Kamvissis, S., Stratis, I.G.: Boundary behavior of the solution to the the linear KdV equation on the half-line. Stud. Appl. Math. 150, 339–379 (2023)

    Article  MathSciNet  Google Scholar 

  59. A. Chatziafratis, L. Grafakos, S. Kamvissis, Explicit solution to the Airy evolution equation on the half-line and its boundary and asymptotic behavior, preprint (2022).

  60. A. Chatziafratis, E.C. Aifantis, A. Carbery, A.S. Fokas, Integral representations for the double-diffusion system on the half-line, preprint (2023).

  61. A. Chatziafratis, A.S. Fokas, On a half-line linear dispersive-pde model arising in solid-fluid dynamics, preprint (2023).

  62. A. Chatziafratis, L. Grafakos, S. Kamvissis, I.G. Stratis, Long-range instabilities for the Airy equation on the half-line, in Proc. of Conf. “Dynamical Systems and Complexity” (2022), to appear in Vol. on “Chaos, Fractals and Complexity”, Eds.: T. Bountis et al, Springer Nature (2023).

  63. Flyer, N., Fokas, A.S.: A hybrid analytical-numerical method for solving evolution partial differential equations. I. The half-line. Proc. R. Soc. Lond. A 464, 1823–1849 (2008)

    MathSciNet  MATH  Google Scholar 

  64. Sifalakis, A.G., Fokas, A.S., Fulton, S.R., Saridakis, Y.G.: The generalized Dirichlet to Neumann map for linear elliptic PDEs and its numerical implementation. Comput. Appl. Math. 219, 9–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. S. Fokas, E. A. Spence, Novel analytical and numerical methods for elliptic boundary value problems, (2009). In: Engquist B., Fokas A., Hairer E., Iserles A. (Eds.), Highly Oscillatory Problems, London Mathematical Society Lecture Note Series 366. Cambridge: Cambridge University Press.

  66. Fornberg, B., Flyer, N.: A numerical implementation of Fokas boundary integral approach: Laplace’s equation on a polygonal domain. Proc. R. Soc. Lond. A 467, 2983–3003 (2011)

    MathSciNet  MATH  Google Scholar 

  67. Hashemzadeh, P., Fokas, A.S., Smitheman, S.A.: A numerical technique for linear elliptic partial differential equations in polygonal domains. Proc. R. Soc. Lond. A 471, 1–13 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Ashton, A.C.L., Crooks, K.M.: Numerical analysis of Fokas’ unified method for linear elliptic PDEs. Appl. Numer. Math. 104, 120–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kesici, E., Pelloni, B., Pryer, T., Smith, D.A.: A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. Eur. J. Appl. Math. 29(3), 543–567 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  70. de Barros, F.P.J., Colbrook, M.J., Fokas, A.S.: A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line. Int. J. Heat Mass Tran. 139, 482–491 (2019)

    Article  Google Scholar 

  71. Tsutsumi, Y.: Global solutions of the nonlinear Schrödinger equations in exterior domains. Commun. PDE 8, 2 (1983)

    Article  MATH  Google Scholar 

  72. Hayashi, N., Nakamitsu, K., Tsutsumi, M.: On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension. Math. Z. 192, 25 (1986)

    Article  MATH  Google Scholar 

  73. Hayashi, N.: Time decay of solutions to the Schrödinger equation in exterior domains I and II, Ann Inst H Poincaré. Phys. Théor. 50, 58 (1989)

    Google Scholar 

  74. Hayashi, N.: Smoothing effect for nonlinear Schrödinger equations in exterior domains. J. Funct. Anal. 89, 58 (1990)

    Article  MATH  Google Scholar 

  75. Ogawa, T., Ozawa, T.: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl. 155, 85 (1991)

    Article  MATH  Google Scholar 

  76. Hayashi, N.: Global existence of small radially symmetric solutions to quadratic nonlinear evolution equations in an exterior domain. Math. Z. 215, 58 (1994)

    Article  Google Scholar 

  77. Fokas, A.S., Its, A.R.: The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation. SIAM J. Math. Anal. 27, 85 (1996)

    Article  MATH  Google Scholar 

  78. Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 76 (1996)

    Article  Google Scholar 

  79. Boutet de Monvel, A., Fokas, A.S., Shepelsky, D.: Analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett. Math. Phys. 65, 36 (2003)

    Article  MATH  Google Scholar 

  80. Kamvissis, S.: Semiclassical nonlinear Schrödinger equation on the half line. J. Math. Phys. 44, 45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ackleh, A.S., Deng, K.: On the critical exponent for the Schrödinger equation with a nonlinear boundary condition. Differ. Integr. Equ. 17, 27 (2004)

    MATH  Google Scholar 

  82. Bu, C., Tsutaya, K., Zhang, C.: Nonlinear Schrödinger equation with inhomogeneous Dirichlet boundary data. J. Math. Phys. 4, 6 (2005)

    MATH  Google Scholar 

  83. Fokas, A.S., Its, A.R., Sung, L.-Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 1, 8 (2005)

    MATH  Google Scholar 

  84. Holmer, J.: The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line. Differ. Integr. Equ. 1, 8 (2005)

    MATH  Google Scholar 

  85. Weder, R.: The forced non-linear Schrödinger equation with a potential on the half-line. Math. Meth. Appl. Sci. 2, 8 (2005)

    Google Scholar 

  86. Boutet de Monvel, A., Its, A., Kotlyarov, V.: Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line. Commun. Math. Phys. 2, 90 (2009)

    MathSciNet  MATH  Google Scholar 

  87. Fokas, A.S., Lenells, J.: An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons. Inverse Probl. 2, 5 (2009)

    MATH  Google Scholar 

  88. Deift, P., Park, J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Notices 65, 75 (2011)

    MATH  Google Scholar 

  89. Lenells, J.: The solution of the global relation for the derivative nonlinear Schrödinger equation on the half-line. Phys. D 240, 63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  90. Lenells, J., Fokas, A.S.: The unified method: II NLS on the half-line with t-periodic boundary conditions. J Phys A: Math Theor 45, 95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  91. Its, A., Shepelsky, D.: Initial boundary value problem for the focusing nonlinear Schrödinger equation with Robin boundary condition: half-line approach. Proc. R. Soc. A 469, 78 (2013)

    Article  MATH  Google Scholar 

  92. Kaikina, E.I.: Asymptotics for inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation. J. Math. Phys. 54, 78 (2013)

    Article  MATH  Google Scholar 

  93. Kaikina, E.I.: Forced cubic Schrödinger equation with Robin boundary data: large-time asymptotics. Proc. R. Soc. A 46, 9 (2013)

    MATH  Google Scholar 

  94. Kaikina, E.I.: Inhomogeneous Neumann initial boundary value problem for the nonlinear Schrödinger equation. J. Differ. Equ. 255, 78 (2013)

    Article  Google Scholar 

  95. Antonopoulou, D.C., Kamvissis, S.: On the Dirichlet-to-Neumann problem for the 1-dimensional cubic NLS equation on the half-line. Nonlinearity 28, 96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  96. Geng, X., Liu, H., Zhu, J.: Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 13, 5 (2015)

    MATH  Google Scholar 

  97. Lenells, J.: Admissible boundary values for the defocusing nonlinear Schrödinger equation with asymptotically time-periodic data. J. Differ. Equ. 25, 9 (2015)

    MathSciNet  MATH  Google Scholar 

  98. Erdoğan, M.B., Tzirakis, N.: Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J. Funct. Anal. 271, 89 (2016)

    Article  MATH  Google Scholar 

  99. Tian, S.-F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472, 27 (2016)

    Article  Google Scholar 

  100. Xu, J.: Initial-boundary value problem for the two-component nonlinear Schrödinger equation on the half-line. J. Nonlinear Math. Phys. 23, 75 (2016)

    Google Scholar 

  101. Arruda, L.K., Lenells, J.: Long-time asymptotics for the derivative nonlinear Schrödinger equation on the half-line. Nonlinearity 30, 65 (2017)

    Article  MATH  Google Scholar 

  102. Fokas, A.S., Himonas, A., Mantzavinos, D.: The nonlinear Schrödinger equation on the half-line. Trans. Am. Math. Soc. 369, 681–709 (2017)

    Article  MATH  Google Scholar 

  103. Bennett, J., Bez, N., Flock, T.C., Gutierrez, S., Iliopoulou, M.: A sharp k-plane Strichartz inequality for the Schrödinger equation. Trans. Am. Math. Soc. 370, 5617–5633 (2018)

    Article  MATH  Google Scholar 

  104. Bona, J.L., Sun, S.-M., Zhang, B.-Y.: Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations. J. Math. Pures Appl. 109, 1–66 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  105. Cho, Y., Hwang, G., Ozawa, T.: On the focusing energy-critical fractional nonlinear Schrödinger equations. Adv. Differ. Equ. 23, 109 (2018)

    MATH  Google Scholar 

  106. Erdoğan, M.B., Gürel, T.B., Tzirakis, N.: The derivative nonlinear Schrödinger equation on the half line. Ann. I. H. Poincaré AN 35, 2 (2018)

    MATH  Google Scholar 

  107. Hoshino, G., Hyakuna, R.: Analytic smoothing effect for the nonlinear Schrödinger equations without square integrability. J. Fourier Anal. Appl. 24, 2 (2018)

    Article  MATH  Google Scholar 

  108. Kaikina, E.I.: Inhomogeneous initial-boundary value problem for the 2D nonlinear Schrödinger equation. J. Math. Phys. 59, 52 (2018)

    Article  MathSciNet  Google Scholar 

  109. Ran, Y., Sun, S.-M., Zhang, B.-Y.: Nonhomogeneous boundary value problems of nonlinear Schrödinger equations in a half plane. SIAM J. Math. Anal. 50, 2773 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  110. Audiard, C.: Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications. Ann. Inst. Fourier 69, 31–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  111. Esquivel, L., Hayashi, N., Kaikina, E.I.: Inhomogeneous Dirichlet-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques. J. Differ. Equ. 266, 1121 (2019)

    Article  MATH  Google Scholar 

  112. Esquivel, L., Hayashi, N., Kaikina, E.I.: Inhomogeneous Neumann-boundary value problem for one dimensional nonlinear Schrödinger equations via factorization techniques. J. Math. Phys. 60, 2 (2019)

    Article  MATH  Google Scholar 

  113. Hayashi, N., Kaikina, E.I.: Inhomogeneous Dirichlet-boundary value problem for nonlinear Schrödinger equations with a power nonlinearity on the upper half-plane. Nonlinear Anal. 187, 279 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  114. Hoshino, G.: Global well-posedness and analytic smoothing effect for the dissipative nonlinear Schrödinger equations. J. Dyn. Differ. Equ. 31, 2339 (2019)

    Article  MATH  Google Scholar 

  115. Liu, T., Dong, H.: The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann–Hilbert approach. Mathematics 7, 170 (2019)

    Article  Google Scholar 

  116. Özsari, T., Yolcu, N.: The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Comm. Pure Appl. Anal. 18, 3285 (2019)

    Article  MATH  Google Scholar 

  117. Capistrano-Filho, R.A., Cavalcante, M., Gallego, F.A.: Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. Pac. J. Math. 309, 35 (2020)

    Article  MATH  Google Scholar 

  118. Fujiwara, K., Georgiev, V., Ozawa, T.: Self-similar solutions to the derivative nonlinear Schrödinger equation. J. Differ. Equ. 268, 7940 (2020)

    Article  MATH  Google Scholar 

  119. Hayashi, N., Kaikina, E.I.: Neumann inhomogeneous initial-boundary value problem for the 2D nonlinear Schrödinger equation. Nonlinear Differ. Equ. Appl. 27, 618 (2020)

    MATH  Google Scholar 

  120. Hayashi, N., Kaikina, E.I., Ogawa, T.: Dirichlet-boundary value problem for one dimensional nonlinear Schrödinger equations with large initial and boundary data. Nonlinear Differ. Equ. Appl. 27, 618 (2020)

    MATH  Google Scholar 

  121. Wang, X.B., Han, B.: A Riemann–Hilbert approach to a generalized nonlinear Schrödinger equation on the quarter plane. Math. Phys. Anal. Geom. 23, 2 (2020)

    Article  Google Scholar 

  122. Xu, T.-Y., Tian, S.-F., Peng, W.-Q.: Riemann–Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations. Math. Meth. Appl. Sci. 43, 45 (2020)

    Article  MATH  Google Scholar 

  123. Hayashi, N., Kaikina, E.I., Ogawa, T.: Inhomogeneous Dirichlet boundary value problem for nonlinear Schrödinger equations in the upper half-space. PDE Appl. 2, 2 (2021)

    MATH  Google Scholar 

  124. Hayashi, N., Kaikina, E.I., Ogawa, T.: Inhomogeneous Neumann boundary value problem for nonlinear Schrödinger equations in the upper half-space. Differ. Integr. Equ. 34, 2 (2021)

    MATH  Google Scholar 

  125. Fernández, A.J., Weth, T.: The nonlinear Schrödinger equation in the half-space. Math. Ann. 383, 641 (2022)

    Article  MATH  Google Scholar 

  126. Guo, B., Wu, J.: Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discr. Contin. Dyn. Syst. B 27, 2 (2022)

    Google Scholar 

  127. Hwang, G.: The mixed nonlinear Schrödinger equation on the half-line. Adv. Cont. Discr. Models 1, 2 (2022)

    Google Scholar 

  128. Li, Y., Tian, S.-F., Yang, J.-J.: Riemann–Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations. Stud. Appl. Math. 148, 22 (2022)

    Article  Google Scholar 

  129. Ozawa, T., Tomioka, K.: Schrödinger-improved Boussinesq system in two space dimensions. J. Evol. Equ. 22, 2 (2022)

    Article  MATH  Google Scholar 

  130. Ballesteros, M., Iniesta, D., Naumkin, I., Peña, C.: Wave and scattering operators for the nonlinear matrix Schrödinger equation on the half-line with a potential. Nonlinear Anal. 227, 113183 (2023)

    Article  MATH  Google Scholar 

  131. Hayashi, N., Li, C., Ogawa, T., Sato, T.: Critical exponent for global existence of solutions to the Schrödinger equation with a nonlinear boundary condition. Nonlinear Anal. 230, 113229 (2023)

    Article  MATH  Google Scholar 

  132. Lee, J.M., Lenells, J.: The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions. Proc. Lond. Math. Soc. 3, 2 (2023)

    MATH  Google Scholar 

  133. Zheng, B., Ozawa, T., Zhai, J.: Blow-up solutions for a class of divergence Schrödinger equations with intercritical inhomogeneous nonlinearity. J. Math. Phys. 64, 2 (2023)

    Article  MATH  Google Scholar 

  134. Clarkson, P.A., Fokas, A.S., Ablowitz, M.J.: Hodograph transformations of linearizable partial differential equations. SIAM J. Appl. Math. 49, 1188–1209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  135. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems, Asymptotics for the mKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  136. Kamvissis, S.: From stationary phase to steepest descent. Contemp. Math. 458, 145–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. Ozawa is partially supported by Grant-in-Aid for Scientific Research (A) #19H00644. S.F. Tian acknowledges the partial support from the National Natural Science Foundation of China under Grant Nos. 11975306 and 12371255, the Natural Science Foundation of Jiangsu Province, China under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province, China under Grant No. JY-059, the 333 Project in Jiangsu Province, China. A. Chatziafratis’s research work was funded, at different stages, through a Fellowship from the Onassis Foundation and a Grant awarded by the State Scholarships Foundation; he expresses his thankfulness to Professors J.L. Bona, C. Dafermos, A.S. Fokas, L. Grafakos, T. Hatziafratis, A.A. Himonas, S. Kamvissis, and I.G. Stratis for being sources of inspiration, encouragement, and support, and wishes also gratefully to acknowledge the Riemann International School of Mathematics (RISM) as well as the Johann Radon Institute for Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sciences, where progress on parts of this work was made, for travel grants and for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Chatziafratis.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatziafratis, A., Ozawa, T. & Tian, SF. Rigorous analysis of the unified transform method and long-range instabilities for the inhomogeneous time-dependent Schrödinger equation on the quarter-plane. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02698-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02698-4

Mathematics Subject Classification

Navigation