Skip to main content
Log in

A Riemann-Hilbert Approach to a Generalized Nonlinear Schrödinger Equation on the Quarter Plane

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this work, we investigate a generalized nonlinear Schrödinger equation on the quarter plane. The initial data are vanishing at infinity while the boundary data are time-periodic, of the form ae2iωt+iδ. The main purpose of this work is to consider the long-time asymptotics of the solution to the initial-boundary value problems. Furthermore, we find that the solutions of the initial-boundary value problems have different asymptotics in different regions of the (x,t)-plane. For the region (I) (i.e, \(0<x<4\left (b-\gamma _{1} a^{2}-\sqrt {2}a\right )\)), asymptotics of the solution takes the form of a plane wave. For the region (II) (i.e., \(4\left (b-\gamma _{1} a^{2}-\sqrt {2}a\right )<x<4tb\)), asymptotics of the solution takes the form of a modulated elliptic wave. For the region (III) (i.e., x > 4tb), asymptotics of the solution takes the form of the Zakharov-Manakov vanishing asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  2. Bluman, G.M., Kumei, S.: Symmetries and Differential Equations. Graduate Texts in Mathematics, vol. 81. Springer, New York (1989)

    MATH  Google Scholar 

  3. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  4. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    ADS  MATH  Google Scholar 

  5. Hirota, R: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. Novikov, S., Manakov, S., Pitaevskii, L, Zakharov, V.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York and London (1984)

    MATH  Google Scholar 

  7. Ma, W.X.: Riemann-Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions. Comput. Appl. Math. 37, 6359–6375 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. A 453, 1411–1443 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Fokas, A.S.: Integrable nonlinear evolution equations on the half-line. Commun. Math. Phys. 230, 1–39 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Xu, J., Fan, E.G.: The unified transform method for the Sasa-Satsuma equation on the half-line. Proc. R. Soc. A 469, 20130068 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472, 20160588 (2016)

    ADS  MATH  Google Scholar 

  12. Tian, S.F.: Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Commun. Pure Appl. Anal. 17, 923–957 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Fokas, A.S., Its, A.R., Sung, L.Y.: The nonlinear Schrödinger equation on the half line. Nonlinearity 18, 1771–1822 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Yang, J.: Nonlinear Waves in Integrable and Non-integrable Systems. SIAM (2010)

  15. Ma, W.X.: Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Moscow, Nauka (1986)

    MATH  Google Scholar 

  17. Ma, W.X.: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 47, 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Ma, W.X.: Riemann-Hilbert problems of a six-component mKdV system and its soliton solutions. Act. Math. Sci. 39, 509–523 (2019)

    MathSciNet  Google Scholar 

  20. Wang, D.S., Zhang, D.J., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y.S., Cheng, Y, He, J.S.: Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation. J. Nonlinear Math. Phys. 24, 210–223 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Wang, X.B., Han, B.: The pair-transition-coupled nonlinear Schrödinger equation: The Riemann-Hilbert problem and N-soliton solutions. Eur. Phys. J. Plus 134, 78 (2019)

    Google Scholar 

  23. Ma, W.X.: Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math. Meth. Appl. Sci. 42, 1099–1113 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ma, W.X.: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations. Appl. Math. Lett. 102, 106161 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Guo, B., Ling, L.: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Deift, P, Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. 137, 295–368 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Manakov, S.V.: Nonlinear Fraunhofer diffraction. Zh. Eksp. Teor. Fiz. 65, 1392–1398 (1973)

    Google Scholar 

  28. Its, A.R.: Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations (Russian). Dokl. Akad. Nauk. SSSR 261, 14–18 (1981)

    MathSciNet  Google Scholar 

  29. Deift, P., Venakides, S., Zhou, X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Comm. Pure ApplComm. Pure Appl. Math. 47, 199–206 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Deift, P., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., pp 181–204. Springer, Berlin (1993)

  31. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Bull. Amer. Math. Soc. 26, 119–123 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Buckingham, R, Venakides, S.: Long-time asymptotics of the nonlinear Schröinger equation shock problem. Comm. Pure Appl. Math. 60, 1349–1414 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Deift, P.A., Kriecherbauer, T., Mclaughlin, K.T.R., Venakides, S., Zhou, X.: Uniform asymptoticsfor polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999)

    MATH  Google Scholar 

  34. Buckingham, R., Venakides, S.: Long-time asymptotics of the nonlinear Schrödinger equation Shock problem. Comm. Pure Appl. Math. LX, 1349–1414 (2007)

  35. Biondini, G., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability. Comm. Pure Appl. Math. LXX, 2300–2365 (2017)

  36. de Monvel, A.B., Its, A., Kotlyarov, V.: Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line. Comm. Math. Phys. 290, 479–522 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Lenells, J.: The nonlinear steepest descent method: Asymptotics for initial-boundary value problems. SIAM J. Math. Anal. 48, 2076–2118 (2016)

    MathSciNet  MATH  Google Scholar 

  38. de Monvel, A.B., Kotlyarov, V.: The focusing nonlinear Schrödinger equation on the quarter plane with time-periodic boundary conditions: a Riemann-Hilbert approach. J. Inst. of Math. Juss. 6, 579–611 (2007)

    MATH  Google Scholar 

  39. Xu, J., Fan, E.G., Chen, Y.: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value. Math. Phys. Anal. Geom. 16, 253–288 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: Without solitons. J. Differential Equations 259, 1098–1148 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Guo, B, Liu, N, Wang, Y.: Long-time asymptotics for the Hirota equation on the half-line. Nonlinear Anal. 174, 118–140 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Liu, N., Guo, B.: Long-time asymptotics for the Sasa-Satsuma equation via nonlinear steepest descent method. J. Math. Phys. 60, 011504 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Huang, L., Xu, J., Fan, E.G.: Long-time asymptotic for the Hirota equation via nonlinear steepest descent method. Nonlinear Anal: RWA 26, 229–262 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions. J. Diff. Equ. 266, 5209–5253 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Ma, W.X.: Long-time asymptotics of a three-component coupled mKdV system. Mathematics 7, 573 (2019)

    Google Scholar 

  46. Liu, H., Geng, X.G., Xue, B.: The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation. J. Diff. Equ. 265, 5984–6008 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Amer. Math. Soc. 146, 1713–1729 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984)

    ADS  MathSciNet  Google Scholar 

  49. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798 (1978)

    ADS  MATH  Google Scholar 

  50. Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Anal: RWA 41, 334–361 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Guo, B., Liu, N.: Long-time asymptotics for the Kundu-Eckhaus equation on the half-line. J. Math. Phys. 59, 061505 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Wang, X., Yang, B., Chen, Y., Yang, Y.Q.: Higher-order rogue wave solutions of the Kundu-Eckhaus equation. Phys. Scr. 89, 095210 (2014)

    ADS  Google Scholar 

  53. Peng, W.Q., Tian, S.F., Zhang, T.T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. Europhys. Lett. 123, 50005 (2018)

    ADS  Google Scholar 

  54. Wang, X.B., Tian, S.F., Zhang, T.T.: Characteristics of the breather and rogue waves in a (2 + 1)-dimensional nonlinear Schrödinger equation. Proc. Amer. Math. Soc. 146, 3353–3365 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Fokas, A.S., Its, A.R.: The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation. SIAM J. Math. Anal. 27, 738–764 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the editor and reviewers for their valuable comments. This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB0202901, the National Natural Science Foundation of China under Grant No.11871180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB0202901, the National Natural Science Foundation of China under Grant No.11871180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XB., Han, B. A Riemann-Hilbert Approach to a Generalized Nonlinear Schrödinger Equation on the Quarter Plane. Math Phys Anal Geom 23, 25 (2020). https://doi.org/10.1007/s11040-020-09347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-020-09347-1

Keywords

Mathematics Subject Classification (2010)

Navigation