Skip to main content
Log in

The Linear KdV Equation with an Interface

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The interface problem for the linear Korteweg–de Vries (KdV) equation in one-dimensional piecewise homogeneous domains is examined by constructing an explicit solution in each domain. The location of the interface is known and a number of compatibility conditions at the boundary are imposed. We provide an explicit characterization of sufficient interface conditions for the construction of a solution using Fokas’s Unified Transform Method. The problem and the method considered here extend that of earlier papers to problems with more than two spatial derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Fokas A.S.: Complex variables: Introduction and Applications. Cambridge Texts in Applied Mathematics, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Ablowitz M.J., Segur H.: Solitons and The Inverse Scattering Transform, SIAM Studies in Applied Mathematics, vol. 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1981)

    Book  MATH  Google Scholar 

  3. Asvestas M., Sifalakis A.G., Papadopoulou E.P., Saridakis Y.G.: Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity. J. Phys. Conf. Ser. 490(1), 012143 (2014)

    Article  ADS  Google Scholar 

  4. Biondini, G., Trogdon, T.: Gibbs phenomenon for dispersive PDEs. arXiv:1411.6142 (2015) (preprint)

  5. Cramer, G.: Introduction á l’analyse des lignes courbes algébriques. Fréres Cramer et C. Philibert (1750)

  6. Deconinck, B., Pelloni, B., Sheils, N.E.: Non-steady state heat conduction in composite walls. Proc. R. Soc. A. 470(2165), 22 (2014)

  7. Deconinck B., Trogdon T., Vasan V.: The method of Fokas for solving linear partial differential equations. SIAM Rev. 56(1), 159–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fokas A.S.: A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 78. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Book  Google Scholar 

  9. Fokas A.S., Pelloni B.: A transform method for linear evolution PDEs on a finite interval. IMA J. Appl. Math. 70(4), 564–587 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Hirota R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  11. Kevorkian J.: Partial Differential Equations, Texts in Applied Mathematics, vol. 35, 2nd edn. Springer, New York (2000)

    Google Scholar 

  12. Levin D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67(1), 95–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mantzavinos, D., Papadomanolaki, M.G., Saridakis, Y.G., Sifalakis, A.G.: Fokas transform method for a brain tumor invasion model with heterogeneous diffusion in 1 + 1 dimensions. Appl. Numer. Math. 104, 47–61 (2014)

  14. Miura R.M.: Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9(8), 1202–1204 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Miura R.M., Gardner C.S., Kruskal M.D.: Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Sheils N.E., Deconinck B.: Heat conduction on the ring: interface problems with periodic boundary conditions. Appl. Math. Lett. 37, 107–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheils N.E., Deconinck B.: Interface problems for dispersive equations. Stud. Appl. Math. 134(3), 253–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sheils, N.E., Deconinck, B.: The time-dependent Schrödinger equation with piecewise constant potentials (2015) (In preparation)

  19. Sheils, N.E., Smith, D.A.: Heat equation on a network using the Fokas method. J. Phys. A Math. Theor. 48(33), 21 (2015)

  20. Trogdon, T.: Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear Special Functions. PhD thesis, University of Washington (2012)

  21. Trogdon T.: A unified numerical approach for the Nonlinear Schrödinger Equations. In: Fokas, A.S., Pelloni, B. (eds) Unified Transform for Boundary Value Problems: Applications and Advances, SIAM, Philadelphia (2015)

  22. Wang, Z., Fokas, A.S.: Generalized Dirichlet to Neumann maps for linear dispersive equations on the half-line (2014). arXiv:1409.2083 (preprint)

  23. Zakharov V.E., Faddeev L.D.: Korteweg–de Vries equation: A completely integrable Hamiltonian system. Funct. Anal. Appl. 5(4), 280–287 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie E. Sheils.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deconinck, B., Sheils, N.E. & Smith, D.A. The Linear KdV Equation with an Interface. Commun. Math. Phys. 347, 489–509 (2016). https://doi.org/10.1007/s00220-016-2690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2690-z

Navigation