Skip to main content
Log in

Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 06 November 2023

This article has been updated

Abstract

Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source: Rat genome database (RGD)

Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348(12):1134–1149

    Article  CAS  PubMed  Google Scholar 

  2. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49(3):497–528

    Article  CAS  PubMed  Google Scholar 

  3. Bartolomucci A et al (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32(6):755–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins–widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 58(2):95–121

    Article  CAS  PubMed  Google Scholar 

  5. Montero-Hadjadje M et al (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192(2):309–324

    Article  CAS  PubMed  Google Scholar 

  6. Kim T et al (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106(4):499–509

    Article  CAS  PubMed  Google Scholar 

  7. Taupenot L et al (2002) Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 115(Pt 24):4827–4841

    Article  CAS  PubMed  Google Scholar 

  8. Tooze SA, Martens GJ, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11(3):116–122

    Article  CAS  PubMed  Google Scholar 

  9. Videen JS et al (1992) Calcium and catecholamine interactions with adrenal chromogranins. comparison of driving forces in binding and aggregation. J Biol Chem 267(5):3066–3073

    Article  CAS  PubMed  Google Scholar 

  10. Yoo SH (1992) Identification of the Ca(2+)-dependent calmodulin-binding region of chromogranin A. Biochemistry 31(26):6134–6140

    Article  CAS  PubMed  Google Scholar 

  11. Mahapatra NR et al (2004) A dynamic pool of calcium in catecholamine storage vesicles. exploration in living cells by a novel vesicle-targeted chromogranin A-aequorin chimeric photoprotein. J Biol Chem 279(49):51107–51121

    Article  CAS  PubMed  Google Scholar 

  12. Borges R et al (2010) Chromogranins as regulators of exocytosis. J Neurochem 114(2):335–343

    Article  CAS  PubMed  Google Scholar 

  13. Pasqua T et al (2016) Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell Tissue Res 363(3):693–712

    Article  CAS  PubMed  Google Scholar 

  14. Díaz-Vera J et al (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 26(1):430–438

    Article  PubMed  Google Scholar 

  15. Mahata SK, Corti A (2019) Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 1455(1):34–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasqua T et al (2019) Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med Chem 11(12):1501–1511

    Article  CAS  PubMed  Google Scholar 

  17. Muntjewerff EM et al (2018) Catestatin as a target for treatment of inflammatory diseases. Front Immunol 9:2199

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garg R et al (2023) Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes. Amino Acids 54(5):549

    Article  Google Scholar 

  19. Bozic J et al (2021) Catestatin as a biomarker of cardiovascular diseases: a clinical perspective. Biomedicines 9(12):1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bourebaba Y et al (2021) Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 134:111113

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe T (2021) The emerging roles of chromogranins and derived polypeptides in atherosclerosis, diabetes, and coronary heart disease. Int J Mol Sci 22(11):6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jati S et al (2023) Catestatin: antimicrobial functions and potential therapeutics. Pharmaceutics 15(5):1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahata SK et al (1997) Novel autocrine feedback control of catecholamine release A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100(6):1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahapatra NR (2008) Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res 80(3):330–338

    Article  CAS  PubMed  Google Scholar 

  25. Mahata SK et al (2003) Catecholamine secretory vesicle stimulus-transcription coupling in vivo. demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. J Biol Chem 278(34):32058–32067

    Article  CAS  PubMed  Google Scholar 

  26. Mahata SK et al (2010) Catestatin: a multifunctional peptide from chromogranin A. Regul Pept 162(1–3):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tatemoto K et al (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324(6096):476–478

    Article  CAS  PubMed  Google Scholar 

  28. O’Connor DT et al (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90(9):5414–5425

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Margalet V et al (2010) Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regul Pept 165(1):71–77

    Article  PubMed  Google Scholar 

  30. Gayen JR et al (2009) A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284(42):28498–28509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tota B et al (2008) The chromogranin A-derived vasostatins: new players in the endocrine heart. Curr Med Chem 15(14):1444–1451

    Article  CAS  PubMed  Google Scholar 

  32. Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41(1):9–18

    Article  CAS  PubMed  Google Scholar 

  33. Helle KB (2010) The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory peptides for cardiovascular functions. Cardiovasc Res 85(1):9–16

    Article  CAS  PubMed  Google Scholar 

  34. Fleming I (2023) Vasostatin-2, angiogenesis and collateral function. Eur Heart J 44(19):1745

    Article  PubMed  Google Scholar 

  35. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47

    Article  CAS  PubMed  Google Scholar 

  36. Rezen T et al (2011) Interplay between cholesterol and drug metabolism. Biochim Biophys Acta 1814(1):146–160

    Article  CAS  PubMed  Google Scholar 

  37. Lippincott-Schwartz J, Phair RD (2010) Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu Rev Biophys 39:559–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261(5126):1280–1281

    Article  CAS  PubMed  Google Scholar 

  39. Mesmin B, Antonny B (2016) The counterflow transport of sterols and PI4P. Biochim Biophys Acta 1861(8(8 Pt B)):940–951

    Article  CAS  PubMed  Google Scholar 

  40. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  PubMed  Google Scholar 

  41. Sezgin E et al (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Byfield FJ et al (2004) Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys J 87(5):3336–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gondre-Lewis MC et al (2006) Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci 119(Pt 9):1876–1885

    Article  CAS  PubMed  Google Scholar 

  44. Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57(11):1577–1592

    Article  CAS  PubMed  Google Scholar 

  45. Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45(4):295–333

    Article  CAS  PubMed  Google Scholar 

  46. Incardona JP, Eaton S (2000) Cholesterol in signal transduction. Curr Opin Cell Biol 12(2):193–203

    Article  CAS  PubMed  Google Scholar 

  47. Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    Article  CAS  PubMed  Google Scholar 

  48. Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  CAS  PubMed  Google Scholar 

  49. Halban PA, Irminger JC (1994) Sorting and processing of secretory proteins. Biochem J 299(Pt 1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tooze SA (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404(1–2):231–244

    Article  CAS  PubMed  Google Scholar 

  51. Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332(Pt 3):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanguy E et al (2016) Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 137(6):904–912

    Article  CAS  PubMed  Google Scholar 

  53. Westhead EW (1987) Lipid composition and orientation in secretory vesicles. Ann N Y Acad Sci 493:92–100

    Article  CAS  PubMed  Google Scholar 

  54. Dhanvantari S, Loh YP (2000) Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275(38):29887–29893

    Article  CAS  PubMed  Google Scholar 

  55. Orci L et al (1981) Topology of morphologically detectable protein and cholesterol in membranes of polypeptide-secreting cells. Philos Trans R Soc Lond B Biol Sci 296(1080):47–54

    Article  CAS  PubMed  Google Scholar 

  56. Wang R et al (2006) Molecular probes for sensing the cholesterol composition of subcellular organelle membranes. Biochim Biophys Acta 1761(10):1169–1181

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Thiele C, Huttner WB (2000) Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi Network. Traffic 1(12):952–962

    Article  CAS  PubMed  Google Scholar 

  58. Lang T et al (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20(9):2202–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J et al (2009) Roles of cholesterol in vesicle fusion and motion. Biophys J 97(5):1371–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ammar MR et al (2013) Lipids in regulated exocytosis: what are they doing? Front Endocrinol (Lausanne) 4:125

    Article  PubMed  Google Scholar 

  61. Hosaka M et al (2002) Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 13(10):3388–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hosaka M et al (2004) Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 279(5):3627–3634

    Article  CAS  PubMed  Google Scholar 

  63. Hosaka M, Watanabe T (2010) Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 57(4):275–286

    Article  CAS  PubMed  Google Scholar 

  64. Baumstark D et al (2019) (1)H NMR spectroscopy quantifies visibility of lipoproteins, subclasses, and lipids at varied temperatures and pressures. J Lipid Res 60(9):1516–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daniels TF et al (2009) Lipoproteins, cholesterol homeostasis and cardiac health. Int J Biol Sci 5(5):474–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feingold KR (2021) Introduction to Lipids and Lipoproteins, in Endotext, K.R. Feingold, et al., Editors. MDText.com, Inc., South Dartmouth, MA

  67. Soliman GA (2018) Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients 10(6):780

    Article  PubMed  PubMed Central  Google Scholar 

  68. Afonso MS et al (2018) Molecular pathways underlying cholesterol homeostasis. Nutrients 10(6):760

    Article  PubMed  PubMed Central  Google Scholar 

  69. Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21(4):225–245

    Article  CAS  PubMed  Google Scholar 

  70. Ge L et al (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7(6):508–519

    Article  CAS  PubMed  Google Scholar 

  71. Garcia CK et al (2001) Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292(5520):1394–1398

    Article  CAS  PubMed  Google Scholar 

  72. Morris SM, Cooper JA (2001) Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2(2):111–123

    Article  CAS  PubMed  Google Scholar 

  73. Poirier S et al (2009) Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem 284(42):28856–28864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahamad S, Bhat SA (2022) Recent update on the development of PCSK9 inhibitors for hypercholesterolemia treatment. J Med Chem 65(23):15513–15539

    Article  CAS  PubMed  Google Scholar 

  75. Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110(7):905–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ikonen E (2006) Mechanisms for cellular cholesterol transport: defects and human disease. Physiol Rev 86(4):1237–1261

    Article  CAS  PubMed  Google Scholar 

  77. Chang TY et al (2001) Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and -2. Curr Opin Lipidol 12(3):289–296

    Article  CAS  PubMed  Google Scholar 

  78. Arenas F, Garcia-Ruiz C, Fernandez-Checa JC (2017) Intracellular cholesterol trafficking and impact in neurodegeneration. Front Mol Neurosci 10:382

    Article  PubMed  PubMed Central  Google Scholar 

  79. Litvinov DY, Savushkin EV, Dergunov AD (2018) Intracellular and plasma membrane events in cholesterol transport and homeostasis. J Lipids 2018:3965054

    Article  PubMed  PubMed Central  Google Scholar 

  80. Raychaudhuri S, Prinz WA (2010) The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol 26:157–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ngo M, Ridgway ND (2009) Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 20(5):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rader DJ et al (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194

    Article  PubMed  PubMed Central  Google Scholar 

  83. Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4(4):214–225

    Article  CAS  PubMed  Google Scholar 

  84. Santos RD et al (2016) Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol 4(10):850–861

    Article  PubMed  Google Scholar 

  85. Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  86. St-Pierre AC et al (2001) Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104(19):2295–2299

    Article  CAS  PubMed  Google Scholar 

  87. Walldius G et al (2001) High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358(9298):2026–2033

    Article  CAS  PubMed  Google Scholar 

  88. Collaboration N.C.D.R.F (2020) Repositioning of the global epicentre of non-optimal cholesterol. Nature 582(7810):73–77

    Article  Google Scholar 

  89. Taverne F et al (2013) Abdominal obesity, insulin resistance, metabolic syndrome and cholesterol homeostasis. PharmaNutrition 1(4):130–136

    Article  CAS  Google Scholar 

  90. van der Harst P, Verweij N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 122(3):433–443

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schunkert H et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43(4):333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Khera AV, Kathiresan S (2017) Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 18(6):331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Do R et al (2015) Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 518(7537):102–106

    Article  CAS  PubMed  Google Scholar 

  94. Erdmann J et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41(3):280–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Myocardial Infarction Genetics et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41(3):334–341

    Article  Google Scholar 

  96. Bergheanu SC, Bodde MC, Jukema JW (2017) Pathophysiology and treatment of atherosclerosis: current view and future perspective on lipoprotein modification treatment. Neth Heart J 25(4):231–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Escola-Gil JC et al (2014) Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep 16(7):424

    Article  PubMed  Google Scholar 

  98. Kolovou GD et al (2006) Tangier disease four decades of research: a reflection of the importance of HDL. Curr Med Chem 13(7):771–782

    Article  CAS  PubMed  Google Scholar 

  99. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24(5):806–815

    Article  PubMed  Google Scholar 

  100. Anchisi L et al (2012) Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 3:486

    CAS  PubMed  Google Scholar 

  101. Zhang J, Liu Q (2015) Cholesterol metabolism and homeostasis in the brain. Protein Cell 6(4):254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vanier MT (2013) Niemann-Pick diseases. Handb Clin Neurol 113:1717–1721

    Article  PubMed  Google Scholar 

  103. Fiedorowicz JG, Haynes WG (2010) Cholesterol, mood, and vascular health: Untangling the relationship: does low cholesterol predispose to depression and suicide, or vice versa? Curr Psychiatr 9(7):17-A

    PubMed  PubMed Central  Google Scholar 

  104. Arguello G et al (2015) Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta 1852(9):1765–1778

    Article  CAS  PubMed  Google Scholar 

  105. Malhotra P et al (2020) Disturbances in cholesterol homeostasis and non-alcoholic fatty liver diseases. Front Med (Lausanne) 7:467

    Article  PubMed  Google Scholar 

  106. Bernstein DL et al (2013) Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol 58(6):1230–1243

    Article  CAS  PubMed  Google Scholar 

  107. Beaudet AL et al (1977) Cholesterol ester storage disease: clinical, biochemical, and pathological studies. J Pediatr 90(6):910–914

    Article  CAS  PubMed  Google Scholar 

  108. Dugail I, Amri EZ, Vitale N (2020) High prevalence for obesity in severe COVID-19: possible links and perspectives towards patient stratification. Biochimie 179:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wei X et al (2020) Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol 14(3):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  110. Marcello A et al (2020) The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biol 36:101682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang XJ et al (2020) In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab 32(2):176-187 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schmidt NM et al (2020) Cholesterol-modifying drugs in COVID-19. Oxf Open Immunol 1(1):iqaa001

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lee W et al (2020) COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther 5(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cervin M, Anderson R (1991) Modulation of coronavirus-mediated cell fusion by homeostatic control of cholesterol and fatty acid metabolism. J Med Virol 35(2):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wei C et al (2020) HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab 2(12):1391–1400

    Article  CAS  PubMed  Google Scholar 

  116. Alfred K., Das chromaffine Gewebe. 1902: Ergeb Anat Entwicklungsgesch. p. 253–348.

  117. Carmon O et al (2020) Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB J 34(5):6769–6790

    Article  CAS  PubMed  Google Scholar 

  118. Yoo SH, Huh YH, Hur YS (2010) Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 30(8):1155–1161

    Article  CAS  PubMed  Google Scholar 

  119. Mahapatra NR et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115(7):1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Simon JP, Aunis D (1989) Biochemistry of the chromogranin A protein family. Biochem J 262(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Friese RS et al (2005) Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am J Hypertens 18(5 Pt 1):633–652

    Article  CAS  PubMed  Google Scholar 

  122. Friese RS et al (2010) Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification. Physiol Genomics 40(3):195–207

    Article  CAS  PubMed  Google Scholar 

  123. Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fantini J et al (2016) Molecular mechanisms of protein-cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids 199:52–60

    Article  CAS  PubMed  Google Scholar 

  125. Durakoglugil ME et al (2015) The relationship of plasma catestatin concentrations with metabolic and vascular parameters in untreated hypertensive patients: influence on high-density lipoprotein cholesterol. Anatol J Cardiol 15(7):577–585

    Article  CAS  PubMed  Google Scholar 

  126. Dopp JM, Reichmuth KJ, Morgan BJ (2007) Obstructive sleep apnea and hypertension: mechanisms, evaluation, and management. Curr Hypertens Rep 9(6):529–534

    Article  PubMed  Google Scholar 

  127. Borovac JA et al (2019) Catestatin serum levels are increased in male patients with obstructive sleep apnea. Sleep Breath 23(2):473–481

    Article  PubMed  Google Scholar 

  128. Kim J et al (2010) Leukocyte telomere length and plasma catestatin and myeloid-related protein 8/14 concentrations in children with obstructive sleep apnea. Chest 138(1):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Subramanian L et al (2017) A haplotype variant of the human chromogranin A gene (CHGA) promoter increases CHGA expression and the risk for cardiometabolic disorders. J Biol Chem 292(34):13970–13985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Allu PK et al (2014) Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 289(7):4455–4469

    Article  CAS  PubMed  Google Scholar 

  131. O’Connor DT (1985) Plasma chromogranin A initial studies in human hypertension. Hypertension 7(3 Pt 2):I76–I79

    CAS  PubMed  Google Scholar 

  132. Takiyyuddin MA et al (1995) Chromogranin A in human hypertension influence of heredity. Hypertension 26(1):213–220

    Article  CAS  PubMed  Google Scholar 

  133. O’Connor DT et al (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20(7):1335–1345

    Article  CAS  PubMed  Google Scholar 

  134. Sanchez-Margalet V et al (1995) Increased plasma pancreastatin-like immunoreactivity levels in non-obese patients with essential hypertension. J Hypertens 13(2):251–258

    CAS  PubMed  Google Scholar 

  135. Funakoshi A et al (1990) Elevated plasma levels of pancreastatin (PST) in patients with non-insulin-dependent diabetes mellitus (NIDDM). Regul Pept 30(2):159–164

    Article  CAS  PubMed  Google Scholar 

  136. Sanchez-Margalet V et al (1998) Increased plasma pancreastatin-like levels in gestational diabetes: correlation with catecholamine levels. Diabetes Care 21(11):1951–1954

    Article  CAS  PubMed  Google Scholar 

  137. Allu PKR et al (2022) Functional Gly297Ser variant of the physiological dysglycemic peptide pancreastatin is a novel risk factor for cardiometabolic disorders. Diabetes 71(3):538–553

    Article  CAS  PubMed  Google Scholar 

  138. Kogawa EM et al (2016) Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Investig 20(8):2083–2095

    Article  PubMed  Google Scholar 

  139. Kojima M et al (2018) Catestatin prevents macrophage-driven atherosclerosis but not arterial injury-induced neointimal hyperplasia. Thromb Haemost 118(1):182–194

    Article  PubMed  Google Scholar 

  140. Chen Y et al (2019) Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role. Atherosclerosis 281:78–88

    Article  CAS  PubMed  Google Scholar 

  141. Lu L et al (2012) Reduced serum levels of vasostatin-2, an anti-inflammatory peptide derived from chromogranin A, are associated with the presence and severity of coronary artery disease. Eur Heart J 33(18):2297–2306

    Article  CAS  PubMed  Google Scholar 

  142. Bachetti T et al (2017) Plasma levels of vasostatin-1, a chromogranin A fragment, are associated with carotid artery maximum stenosis: a pilot study. Int J Cardiol 236:438–443

    Article  PubMed  Google Scholar 

  143. Ottesen AH et al (2017) Glycosylated chromogranin A in heart failure: implications for processing and cardiomyocyte calcium homeostasis. Circ Heart Fail 10(2):e003675

    Article  CAS  PubMed  Google Scholar 

  144. Sato Y et al (2018) Inhibitory effects of vasostatin-1 against atherogenesis. Clin Sci (Lond) 132(23):2493–2507

    Article  CAS  PubMed  Google Scholar 

  145. Jansson AM et al (2009) Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J 30(1):25–32

    Article  PubMed  Google Scholar 

  146. Estensen ME et al (2006) Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. Am Heart J 152(5):927 e1–6

    Article  PubMed  Google Scholar 

  147. Omland T, Dickstein K, Syversen U (2003) Association between plasma chromogranin a concentration and long-term mortality after myocardial infarction. Am J Med 114(1):25–30

    Article  CAS  PubMed  Google Scholar 

  148. Wang X et al (2011) Dramatic changes in catestatin are associated with hemodynamics in acute myocardial infarction. Biomarkers 16(4):372–377

    Article  CAS  PubMed  Google Scholar 

  149. Meng L et al (2013) Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgrad Med J 89(1050):193–196

    Article  PubMed  Google Scholar 

  150. Liu L et al (2013) Plasma levels and potential roles of catestatin in patients with coronary heart disease. Scand Cardiovasc J 47(4):217–224

    Article  CAS  PubMed  Google Scholar 

  151. Xu W et al (2017) Plasma catestatin in patients with acute coronary syndrome. Cardiology 136(3):164–169

    Article  CAS  PubMed  Google Scholar 

  152. Zhu D et al (2017) Catestatin-a novel predictor of left ventricular remodeling after acute myocardial infarction. Sci Rep 7:44168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu D et al (2015) Correlation of plasma catestatin level and the prognosis of patients with acute myocardial infarction. PLoS ONE 10(4):e0122993

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pan WQ et al (2016) Association of decreased serum vasostatin-2 level with ischemic chronic heart failure and with MACE in 3-year follow-up: Vasostatin-2 prevents heart failure in myocardial infarction rats. Int J Cardiol 221:1–11

    Article  PubMed  Google Scholar 

  155. Kannel WB, McGee DL (1979) Diabetes and cardiovascular risk factors: the Framingham study. Circulation 59(1):8–13

    Article  CAS  PubMed  Google Scholar 

  156. Tobin KA et al (2002) Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem 277(12):10691–10697

    Article  CAS  PubMed  Google Scholar 

  157. Tian J, Goldstein JL, Brown MS (2016) Insulin induction of SREBP-1c in rodent liver requires LXRalpha-C/EBPbeta complex. Proc Natl Acad Sci U S A 113(29):8182–8187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Penque BA et al (2013) Hexosamine biosynthesis impairs insulin action via a cholesterolgenic response. Mol Endocrinol 27(3):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McNulty PH (2007) Hexosamine biosynthetic pathway flux and cardiomyopathy in type 2 diabetes mellitus focus on “impact of type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart.” Am J Physiol Cell Physiol 292(4):C1243-4

    Article  PubMed  Google Scholar 

  160. Bhonagiri P et al (2011) Evidence coupling increased hexosamine biosynthesis pathway activity to membrane cholesterol toxicity and cortical filamentous actin derangement contributing to cellular insulin resistance. Endocrinology 152(9):3373–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gonzalez-Yanes C, Sanchez-Margalet V (2000) Pancreastatin modulates insulin signaling in rat adipocytes: mechanisms of cross-talk. Diabetes 49(8):1288–1294

    Article  CAS  PubMed  Google Scholar 

  162. Gallo MP et al (2018) Catestatin induces glucose uptake and GLUT4 trafficking in adult rat cardiomyocytes. Biomed Res Int 2018:2086109

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wu H et al (1995) A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. J Clin Invest 96(1):568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Canaff L et al (1998) Analysis of molecular mechanisms controlling neuroendocrine cell specific transcription of the chromogranin A gene. Endocrinology 139(3):1184–1196

    Article  CAS  PubMed  Google Scholar 

  165. Tang K et al (1996) Stimulus-transcription coupling in pheochromocytoma cells. promoter region-specific activation of chromogranin a biosynthesis. J Biol Chem 271(45):28382–28390

    Article  CAS  PubMed  Google Scholar 

  166. Taupenot L et al (1998) Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP). J Clin Invest 101(4):863–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mahapatra NR et al (2003) Secretin activation of chromogranin A gene transcription. identification of the signaling pathways in cis and in trans. J Biol Chem 278(22):19986–19994

    Article  CAS  PubMed  Google Scholar 

  168. Mahata SK et al (1999) Neurotrophin activation of catecholamine storage vesicle protein gene expression: signaling to chromogranin a biosynthesis. Neuroscience 88(2):405–424

    Article  CAS  PubMed  Google Scholar 

  169. Plath T et al (1999) Interferon-alpha inhibits chromogranin A promoter activity in neuroendocrine pancreatic cancer cells. FEBS Lett 458(3):378–382

    Article  CAS  PubMed  Google Scholar 

  170. Hocker M et al (1998) Sp1 and CREB mediate gastrin-dependent regulation of chromogranin A promoter activity in gastric carcinoma cells. J Biol Chem 273(51):34000–34007

    Article  CAS  PubMed  Google Scholar 

  171. Raychowdhury R et al (2002) Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3’5’-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter. Mol Endocrinol 16(12):2802–2818

    Article  CAS  PubMed  Google Scholar 

  172. Persson P et al (2004) Olf/EBF proteins are expressed in neuroblastoma cells: potential regulators of the chromogranin A and SCG10 promoters. Int J Cancer 110(1):22–30

    Article  CAS  PubMed  Google Scholar 

  173. Rao F et al (2012) Genetic variation within a metabolic motif in the chromogranin a promoter: pleiotropic influence on cardiometabolic risk traits in twins. Am J Hypertens 25(1):29–40

    Article  CAS  PubMed  Google Scholar 

  174. Chiron S et al (2011) Proteomic analysis yields an unexpected trans-acting point in control of the human sympathochromaffin phenotype. Circ Cardiovasc Genet 4(4):437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen Y et al (2008) Common genetic variants in the chromogranin A promoter alter autonomic activity and blood pressure. Kidney Int 74(1):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bailey TL et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fornes O et al (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92

    CAS  PubMed  Google Scholar 

  178. Lee C, Huang CH (2013) LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Biotechniques 54(3):141–153

    Article  CAS  PubMed  Google Scholar 

  179. Messeguer X et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18(2):333–334

    Article  CAS  PubMed  Google Scholar 

  180. Chekmenev DS, Haid C, Kel AE (2005) P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 33(Web Server issue):W432-7

    PubMed  Google Scholar 

  181. Zambelli F, Pesole G, Pavesi G (2009) Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37(6):W247–W252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Friese RS et al (2013) MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet 22(18):3624–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang K et al (2015) Molecular mechanism for hypertensive renal disease: differential regulation of chromogranin A expression at 3′-untranslated region polymorphism C+87T by MicroRNA-107. J Am Soc Nephrol 26(8):1816–1825

    Article  CAS  PubMed  Google Scholar 

  184. Diniz GP et al (2017) Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clin Sci (Lond) 131(24):2885–2900

    Article  CAS  PubMed  Google Scholar 

  185. Vlachos IS et al (2015) DIANA-miRPath v30: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dweep H et al (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  PubMed  Google Scholar 

  187. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454

    Article  PubMed  PubMed Central  Google Scholar 

  188. Goedeke L et al (2015) MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21(11):1280–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang D et al (2018) Apoptotic cell induction of miR-10b in macrophages contributes to advanced atherosclerosis progression in ApoE-/- mice. Cardiovasc Res 114(13):1794–1805

    Article  CAS  PubMed  Google Scholar 

  190. Rayner KJ et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Najafi-Shoushtari SH (2011) MicroRNAs in cardiometabolic disease. Curr Atheroscler Rep 13(3):202–207

    Article  CAS  PubMed  Google Scholar 

  192. Marquart TJ et al (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 107(27):12228–12232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Price NL et al (2017) Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep 21(5):1317–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Li T et al (2013) Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 58(3):1111–1121

    Article  CAS  PubMed  Google Scholar 

  195. Allen RM et al (2012) miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 4(9):882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Davalos A et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108(22):9232–9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Strub JM et al (1997) Phosphorylation and O-glycosylation sites of bovine chromogranin A from adrenal medullary chromaffin granules and their relationship with biological activities. J Biol Chem 272(18):11928–11936

    Article  CAS  PubMed  Google Scholar 

  198. Gadroy P et al (1998) Phosphorylation and O-glycosylation sites of human chromogranin A (CGA79-439) from urine of patients with carcinoid tumors. J Biol Chem 273(51):34087–34097

    Article  CAS  PubMed  Google Scholar 

  199. Motoshima H et al (2006) AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574(Pt 1):63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Viollet B et al (2009) AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 196(1):81–98

    Article  CAS  PubMed  Google Scholar 

  201. Ke R et al (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42(4):384–392

    Article  CAS  PubMed  Google Scholar 

  202. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89(3):1025–1078

    Article  CAS  PubMed  Google Scholar 

  203. Clarke PR, Hardie DG (1990) Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 9(8):2439–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Omkumar RV, Darnay BG, Rodwell VW (1994) Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. role of serine 871. J Biol Chem 269(9):6810–6814

    Article  CAS  PubMed  Google Scholar 

  205. Henin N et al (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9(7):541–546

    Article  CAS  PubMed  Google Scholar 

  206. Bandyopadhyay GK et al (2012) Catestatin (chromogranin A(352–372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J Biol Chem 287(27):23141–23151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Prieur X et al (2008) Leptin regulates peripheral lipid metabolism primarily through central effects on food intake. Endocrinology 149(11):5432–5439

    Article  CAS  PubMed  Google Scholar 

  208. Kosztaczky B et al (2007) Leptin stimulates endogenous cholesterol synthesis in human monocytes: new role of an old player in atherosclerotic plaque formation. leptin-induced increase in cholesterol synthesis. Int J Biochem Cell Biol 39(9):1637–1645

    Article  CAS  PubMed  Google Scholar 

  209. Iqbal J et al (2020) Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 295(13):4101–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bandyopadhyay GK et al (2015) Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes 64(1):104–116

    Article  CAS  PubMed  Google Scholar 

  211. Gupta AP et al (2019) Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomed Pharmacother 116:108959

    Article  CAS  PubMed  Google Scholar 

  212. Cook KL, Clarke R (2012) Heat shock 70 kDa protein 5/glucose-regulated protein 78 “AMP”ing up autophagy. Autophagy 8(12):1827–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Biswas N et al (2014) Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism. PLoS ONE 9(1):e84132

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hossain Z et al (2018) Discovery of pancreastatin inhibitor PSTi8 for the treatment of insulin resistance and diabetes: studies in rodent models of diabetes mellitus. Sci Rep 8(1):8715

    Article  PubMed  PubMed Central  Google Scholar 

  215. Casas C (2017) GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci 11:177

    Article  PubMed  PubMed Central  Google Scholar 

  216. Werstuck GH et al (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107(10):1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee JN, Ye J (2004) Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J Biol Chem 279(43):45257–45265

    Article  CAS  PubMed  Google Scholar 

  218. Wang Y et al (2015) GRP78 rescues the ABCG5 ABCG8 sterol transporter in db/db mice. Metabolism 64(11):1435–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liao F et al (2015) Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep 5:16590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49(10):497–505

    Article  CAS  PubMed  Google Scholar 

  221. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  222. Smith U (1983) Adrenergic control of lipid metabolism. Acta Med Scand Suppl 672:41–44

    Article  CAS  PubMed  Google Scholar 

  223. Krone W, Muller-Wieland D, Greten H (1985) Effects of adrenergic antihypertensive drugs on sterol synthesis in freshly isolated human mononuclear leukocytes. J Cardiovasc Pharmacol 7(6):1134–1137

    Article  CAS  PubMed  Google Scholar 

  224. Krone W et al (1984) Stimulation of beta 2-adrenergic receptors suppresses sterol synthesis in human mononuclear leukocytes. Biochim Biophys Acta 804(1):137–140

    Article  CAS  PubMed  Google Scholar 

  225. Petrone A et al (2006) Association of beta2 adrenergic receptor polymorphisms and related haplotypes with triglyceride and LDL-cholesterol levels. Eur J Hum Genet 14(1):94–100

    Article  CAS  PubMed  Google Scholar 

  226. Davidson MH (2015) Beta-2 Agonism: a potential therapeutic target for dyslipidemia. EBioMedicine 2(4):284

    Article  PubMed  PubMed Central  Google Scholar 

  227. Holmes C, Middleton B (1997) Cyclic AMP-mediated control of LDL receptor gene expression in human skin fibroblasts. Biochem Soc Trans 25(2):179S

    Article  CAS  PubMed  Google Scholar 

  228. Martin G et al (1999) Comparison of expression and regulation of the high-density lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. Eur J Biochem 261(2):481–491

    Article  CAS  PubMed  Google Scholar 

  229. Smith JD et al (1996) Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors. J Biol Chem 271(48):30647–30655

    Article  CAS  PubMed  Google Scholar 

  230. Oram JF et al (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 275(44):34508–34511

    Article  CAS  PubMed  Google Scholar 

  231. Bernard DW et al (1991) cAMP stimulates cholesteryl ester clearance to high density lipoproteins in J7774 macrophages. J Biol Chem 266(2):710–716

    Article  CAS  PubMed  Google Scholar 

  232. Sacks FM, Dzau VJ (1986) Adrenergic effects on plasma lipoprotein metabolism. speculation on mechanisms of action. Am J Med 80(2A):71–81

    Article  CAS  PubMed  Google Scholar 

  233. Mazza R et al (2008) Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol 295(1):H113–H122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bassino E et al (2011) A novel catestatin-induced antiadrenergic mechanism triggered by the endothelial PI3K-eNOS pathway in the myocardium. Cardiovasc Res 91(4):617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kiranmayi M et al (2016) Catestatin Gly364Ser variant alters systemic blood pressure and the risk for hypertension in human populations via endothelial nitric oxide pathway. Hypertension 68(2):334–347

    Article  CAS  PubMed  Google Scholar 

  236. Chu SY et al (2020) Catestatin in defense of oxidative-stress-induced apoptosis: a novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 123:170200

    Article  CAS  PubMed  Google Scholar 

  237. Cerra MC et al (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101(1):43–52

    Article  CAS  PubMed  Google Scholar 

  238. Gallo MP et al (2007) Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium. Am J Physiol Heart Circ Physiol 292(6):H2906–H2912

    Article  CAS  PubMed  Google Scholar 

  239. Tota B et al (2012) The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J 26(7):2888–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Di Scala C et al (2017) Relevance of CARC and CRAC cholesterol-recognition motifs in the nicotinic acetylcholine receptor and other membrane-bound receptors. Curr Top Membr 80:3–23

    Article  PubMed  Google Scholar 

  241. Borroni V, Barrantes FJ (2011) Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 286(19):17122–17132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhang G et al (2018) Placental mechanism of prenatal nicotine exposure-reduced blood cholesterol levels in female fetal rats. Toxicol Lett 296:31–38

    Article  CAS  PubMed  Google Scholar 

  243. Song W et al (2015) The implication of cigarette smoking and cessation on macrophage cholesterol efflux in coronary artery disease patients. J Lipid Res 56(3):682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sahu BS et al (2012) Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor. J Cell Sci 125(9):2323–2337

    CAS  PubMed  Google Scholar 

  245. Wang C et al (2017) Nicotine accelerates atherosclerosis in apolipoprotein E-deficient mice by activating alpha7 nicotinic acetylcholine receptor on mast cells. Arterioscler Thromb Vasc Biol 37(1):53–65

    Article  PubMed  Google Scholar 

  246. Wu Y et al (2015) Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 21(4):373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Dong F et al (2014) Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1. PLoS ONE 9(11):e113789

    Article  PubMed  PubMed Central  Google Scholar 

  248. Du X et al (2006) Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell 17(6):2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Penna C et al (2011) Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Res Cardiol 106(3):409–420

    Article  CAS  PubMed  Google Scholar 

  250. Bi X et al (2018) Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation. Circ Res 122(11):1545–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bassino E et al (2015) Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS ONE 10(3):e0119790

    Article  PubMed  PubMed Central  Google Scholar 

  252. Caron A, Richard D, Laplante M (2015) The roles of mTOR complexes in lipid metabolism. Annu Rev Nutr 35:321–348

    Article  CAS  PubMed  Google Scholar 

  253. Lu XY et al (2020) Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature 588(7838):479–484

    Article  CAS  PubMed  Google Scholar 

  254. Esteve E, Ricart W, Fernandez-Real JM (2005) Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr 24(1):16–31

    Article  CAS  PubMed  Google Scholar 

  255. Kim MS et al (2007) Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 56(2):267–279

    Article  CAS  PubMed  Google Scholar 

  256. Zimetti F et al (2017) Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction. J Lipid Res 58(10):2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Tang ZH et al (2017) New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis 262:113–122

    Article  CAS  PubMed  Google Scholar 

  258. Edfeldt K et al (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105(10):1158–1161

    Article  CAS  PubMed  Google Scholar 

  259. Zhou Y et al (2020) The role of toll-like receptors in atherothrombotic cardiovascular disease. ACS Pharmacol Transl Sci 3(3):457–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Chen H et al (2019) Catestatin prevents endothelial inflammation and promotes thrombus resolution in acute pulmonary embolism in mice. Biosci Rep 39(11):BSR20192236

  261. Fessler MB (2008) Liver X receptor: crosstalk node for the signaling of lipid metabolism, carbohydrate metabolism, and innate immunity. Curr Signal Transduct Ther 3(2):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ito A et al (2015) LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 4:e08009

    Article  PubMed  PubMed Central  Google Scholar 

  263. Manandhar B, Cochran BJ, Rye KA (2020) Role of high-density lipoproteins in cholesterol homeostasis and glycemic control. J Am Heart Assoc 9(1):e013531

    Article  CAS  PubMed  Google Scholar 

  264. Huang X et al (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272(2):971–976

    Article  CAS  PubMed  Google Scholar 

  266. Valicherla GR et al (2013) Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genom 45(22):1060–1071

    Article  CAS  Google Scholar 

  267. Ying W et al (2018) Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production leading to improved insulin sensitivity. Diabetes 67(5):841–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Kanuri BN et al (2017) Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep 7:41009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Strehlow K et al (2000) Angiotensin AT1 receptor over-expression in hypercholesterolaemia. Ann Med 32(6):386–389

    Article  CAS  PubMed  Google Scholar 

  270. Singh BM, Mehta JL (2003) Interactions between the renin-angiotensin system and dyslipidemia: relevance in the therapy of hypertension and coronary heart disease. Arch Intern Med 163(11):1296–1304

    Article  CAS  PubMed  Google Scholar 

  271. Daugherty A et al (2008) Augmentation of the renin-angiotensin system by hypercholesterolemia promotes vascular diseases. Future Lipidol 3(6):625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Daugherty A et al (2004) Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 110(25):3849–3857

    Article  CAS  PubMed  Google Scholar 

  273. Keidar S et al (1999) Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 146(2):249–257

    Article  CAS  PubMed  Google Scholar 

  274. Keidar S et al (1995) Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis 115(2):201–215

    Article  CAS  PubMed  Google Scholar 

  275. Keidar S, Kaplan M, Aviram M (1996) Angiotensin II-modified LDL is taken up by macrophages via the scavenger receptor, leading to cellular cholesterol accumulation. Arterioscler Thromb Vasc Biol 16(1):97–105

    Article  CAS  PubMed  Google Scholar 

  276. Keidar S, Attias J (1997) Angiotensin II injection into mice increases the uptake of oxidized LDL by their macrophages via a proteoglycan-mediated pathway. Biochem Biophys Res Commun 239(1):63–67

    Article  CAS  PubMed  Google Scholar 

  277. Li D et al (1999) Proapoptotic effects of ANG II in human coronary artery endothelial cells: role of AT1 receptor and PKC activation. Am J Physiol 276(3):H786–H792

    CAS  PubMed  Google Scholar 

  278. Phelps T et al (2019) The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 10(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chinetti G et al (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7(1):53–58

    Article  CAS  PubMed  Google Scholar 

  280. Claudel T et al (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 109(7):961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Tao R et al (2013) FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 288(41):29252–29259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5(11):248

    Article  PubMed  PubMed Central  Google Scholar 

  283. Sanchez-Margalet V, Gonzalez-Yanes C (1998) Pancreastatin inhibits insulin action in rat adipocytes. Am J Physiol 275(6):E1055–E1060

    CAS  PubMed  Google Scholar 

  284. Sanchez V, Calvo JR, Goberna R (1990) Glycogenolytic effect of pancreastatin in the rat. Biosci Rep 10(1):87–91

    Article  CAS  PubMed  Google Scholar 

  285. Mahata SK et al (1998) A novel, catecholamine release-inhibitory peptide from chromogranin A: autocrine control of nicotinic cholinergic-stimulated exocytosis. Adv Pharmacol 42:260–264

    Article  CAS  PubMed  Google Scholar 

  286. Angelone T et al (2015) The NO stimulator, catestatin, improves the frank-starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19

    Article  CAS  PubMed  Google Scholar 

  287. Penna C et al (2010) Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol 30(8):1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Fung MM et al (2010) Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 32(5):278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Radek KA et al (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 128(6):1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Akaddar A et al (2010) Catestatin, an endogenous chromogranin A-derived peptide, inhibits in vitro growth of Plasmodium falciparum. Cell Mol Life Sci 67(6):1005–1015

    Article  CAS  PubMed  Google Scholar 

  291. Briolat J et al (2005) New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci 62(3):377–385

    Article  CAS  PubMed  Google Scholar 

  292. Cappello S et al (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circ Physiol 293(1):H719–H727

    Article  CAS  PubMed  Google Scholar 

  293. Lugardon K et al (2000) Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem 275(15):10745–10753

    Article  CAS  PubMed  Google Scholar 

  294. Gasparri A et al (1997) Chromogranin A fragments modulate cell adhesion. Identification and characterization of a pro-adhesive domain. J Biol Chem 272(33):20835–20843

  295. Fasciotto BH et al (1993) Parastatin (porcine chromogranin A347–419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology 133(2):461–466

    Article  CAS  PubMed  Google Scholar 

  296. Pasqua T et al (2015) pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. J Endocrinol 227(3):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Lugardon K et al (2001) Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem 276(38):35875–35882

    Article  CAS  PubMed  Google Scholar 

  298. Filice E et al (2015) Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides 71:40–48

    Article  CAS  PubMed  Google Scholar 

  299. Strub JM et al (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271(45):28533–28540

    Article  CAS  PubMed  Google Scholar 

  300. Curry WJ et al (2002) WE-14, a chromogranin a-derived neuropeptide. Ann N Y Acad Sci 971:311–316

    Article  CAS  PubMed  Google Scholar 

  301. Stadinski BD et al (2010) Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol 11(3):225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Dooley KA, Bennett MK, Osborne TF (1999) A critical role for cAMP response element-binding protein (CREB) as a Co-activator in sterol-regulated transcription of 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter. J Biol Chem 274(9):5285–5291

    Article  CAS  PubMed  Google Scholar 

  303. Lemberger T et al (2008) CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 22(8):2872–2879

    Article  CAS  PubMed  Google Scholar 

  304. Liu J et al (2000) Identification of a novel sterol-independent regulatory element in the human low density lipoprotein receptor promoter. J Biol Chem 275(7):5214–5221

    Article  CAS  PubMed  Google Scholar 

  305. Yieh L, Sanchez HB, Osborne TF (1995) Domains of transcription factor Sp1 required for synergistic activation with sterol regulatory element binding protein 1 of low density lipoprotein receptor promoter. Proc Natl Acad Sci U S A 92(13):6102–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Sanchez HB, Yieh L, Osborne TF (1995) Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene. J Biol Chem 270(3):1161–1169

    Article  CAS  PubMed  Google Scholar 

  307. Herzig S et al (2003) CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 426(6963):190–193

    Article  CAS  PubMed  Google Scholar 

  308. Zhang F et al (2003) Specific interaction of Egr1 and c/EBPbeta leads to the transcriptional activation of the human low density lipoprotein receptor gene. J Biol Chem 278(45):44246–44254

    Article  CAS  PubMed  Google Scholar 

  309. Gokey NG et al (2011) Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression. J Biol Chem 286(34):29501–29510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Alvarez V et al (2008) The Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene promoter is not associated with late onset Alzheimer disease. Alzheimer Dis Assoc Disord 22(2):177–180

    Article  CAS  PubMed  Google Scholar 

  311. Hoppe KL, Francone OL (1998) Binding and functional effects of transcription factors Sp1 and Sp3 on the proximal human lecithin:cholesterol acyltransferase promoter. J Lipid Res 39(5):969–977

    Article  CAS  PubMed  Google Scholar 

  312. Wu N et al (2013) Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding. Biochim Biophys Acta 1832(10):1560–1568

    Article  CAS  PubMed  Google Scholar 

  313. Zhang C et al (2019) OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 383(2):111512

    Article  CAS  PubMed  Google Scholar 

  314. Kim JH, Lee JN, Paik YK (2001) Cholesterol biosynthesis from lanosterol A concerted role for Sp1 and NF-Y-binding sites for sterol-mediated regulation of rat 7-dehydrocholesterol reductase gene expression. J Biol Chem 276(21):18153–18160

    Article  CAS  PubMed  Google Scholar 

  315. Cagen LM et al (2005) Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J 385(Pt 1):207–216

    Article  CAS  PubMed  Google Scholar 

  316. Stroup D, Chiang JY (2000) HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). J Lipid Res 41(1):1–11

    Article  CAS  PubMed  Google Scholar 

  317. Yamazaki T et al (2013) The COUP-TFII variant lacking a DNA-binding domain inhibits the activation of the Cyp7a1 promoter through physical interaction with COUP-TFII. Biochem J 452(2):345–357

    Article  CAS  PubMed  Google Scholar 

  318. Myers SA, Wang SC, Muscat GE (2006) The chicken ovalbumin upstream promoter-transcription factors modulate genes and pathways involved in skeletal muscle cell metabolism. J Biol Chem 281(34):24149–24160

    Article  CAS  PubMed  Google Scholar 

  319. Robinson CE et al (1999) A corepressor and chicken ovalbumin upstream promoter transcriptional factor proteins modulate peroxisome proliferator-activated receptor-gamma2/retinoid X receptor alpha-activated transcription from the murine lipoprotein lipase promoter. Endocrinology 140(4):1586–1593

    Article  CAS  PubMed  Google Scholar 

  320. Buniello A et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005–D1012

    Article  CAS  PubMed  Google Scholar 

  321. Beck T, Shorter T, Brookes AJ (2020) GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res 48(D1):D933–D940

    CAS  PubMed  Google Scholar 

  322. Wolfe D et al (2013) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  323. Lu X et al (2017) Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat Genet 49(12):1722–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Willer CJ et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Kanai M et al (2018) Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet 50(3):390–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all the researchers who contributed to the areas of Chromogranin A and cholesterol research. All studies could not be cited due to space constraints. DRI and JV would like to thank Dr. Abrar Ali Khan (IIT Madras) for his valuable inputs.

Funding

NRM received research grants from the Department of Biotechnology (BT/PR25796/GET/119/98/2017; BT/PR23017/MED/30/1838/2017), Department of Science and Technology (SR/SO/HS-084/2013A) and Council of Scientific and Industrial Research (37/1564/12-EMR-II), Government of India. DRI and JV are thankful to Ministry of Human Resource Development (MHRD), Government of India for research fellowships. NV acknowledges support from the Agence Nationale pour la Recherche (ANR-19-CE44-0019 and ANR-22-CE44-0029).

Author information

Authors and Affiliations

Authors

Contributions

DRI and JV performed literature search, data analysis and drafted the manuscript. ET and NV provided critical inputs and edited the manuscript. NRM conceptualized and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Nicolas Vitale or Nitish R. Mahapatra.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: to update the entries in Table 1, 5th column heading is incorrect as “lipoproteins” and should have been reads as “apolipoproteins”. In entry Chylomicrons under the Pathophysiological implications column the term dietarytriglycerides should read as “dietary triglycerides”. In last entry LPA the value for size was incorrect as 30 and should have been reads as ~30.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, D.R., Venkatraman, J., Tanguy, E. et al. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell. Mol. Life Sci. 80, 271 (2023). https://doi.org/10.1007/s00018-023-04908-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04908-3

Keywords

Navigation