Skip to main content
Log in

Recombinant N–terminal fragments of chromogranin–A modulate cardiac function of the Langendorff–perfused rat heart

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In this study we tested the hypothesis that vasostatins could act as myocardial modulators in the mammalian heart. Using the Langendorff–perfused rat heart, the cardiac effects of the two recombinant human CGA N–terminal fragments STA–CGA1–78 and STA–CGA1–115, containing the vasostatin–1 (CGA 1–76) and vasostatin–2 (CGA 1–113) sequences, respectively, were evaluated at concentrations of 11 ÷ 165 nM. Cardiac performance was evaluated by analyzing left ventricular pressure (LVP) and the rate pressure product (RPP: HR × LVP), used as indexes of contractile activity and cardiac work, respectively. Under basal conditions, STA–CGA1–78 at all concentrations tested elicited a dose–dependent negative inotropism (LVP variations ranging from –9.6% ± 2 to –23% ± 2.9) without affecting coronary pressure (CP). In contrast, STA–CGA1–115 increased CP at 110 and 165 nM without affecting inotropism. Both STA–CGA1–78 and STA–CGA1–115 counteracted the cardio–stimulatory effects of isoproterenol (ISO). The ISO–dependent positive chronotropism was unaffected by STA–CGA1–78, while being reduced by STA–CGA1–115. Both peptides abolished the ISO–induced positive inotropism without modifying either the β–adrenergic–dependent coronary dilation or the ouabain–induced positive inotropism. The analysis of the percentage of variations of RPP in terms of EC50 values of ISO alone (–8.5 ± 0.3; r2 = 0.88) and in presence of STA–CGA1–78 (11, or 33, or 65 nM: –7.7 ± 0.15, r2 = 0.97; –7.7 ± 0.15, r2 = 0.97; –7.8 ± 0.78, r2 = 0.55, respectively) revealed a non–competitive type of antagonism of STA–CGA1–78. Taken together, these data suggest vasostatins as novel cardioregulatory peptides in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18

    Article  PubMed  CAS  Google Scholar 

  2. Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:405–412

    PubMed  CAS  Google Scholar 

  3. Abbott D, Lodola A (1992) The effects of isoproterenol on the isolated perfused rat heart. Res Commun Chem Pathol Pharmacol 76:125–128

    PubMed  CAS  Google Scholar 

  4. Ali N, Xu X, Brito-Martins M, Poole- Wilson A, Harding SE, Fuller SJ (2004) Beta-adrenoceptor subtype dependence of chronotropy in mouse embryonic stem cell-derived cardiomyocytes. Basic Res Cardiol 99:382–391

    Article  PubMed  CAS  Google Scholar 

  5. Angeletti RH, Aardal S, Serck-Hanssen G, Gee P, Helle KB (1994) Vasoinhibitory activity of synthetic peptides from the amino terminus of chromogranin A. Acta Physiol Scand 152:11–19

    PubMed  CAS  Google Scholar 

  6. Aunis D, Metz-Boutigue M-H (2000) Chromogranins: current concepts. Structural and functional aspects. Adv Exp Med Biol 482:21–38

    PubMed  CAS  Google Scholar 

  7. Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59

    PubMed  CAS  Google Scholar 

  8. Brekke JF, Osol GJ, Helle KB (2002) Nterminal chromogranin-derived peptides as dilators of bovine coronary resistance arteries. Regul Pept 105:93–100

    Article  PubMed  CAS  Google Scholar 

  9. Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, Parrinello G, Corti A (2002) Chromogranin A in heart failure. A novel neurohumoral factor and predictor for mortality. Eur Heart J 23:967–974

    PubMed  CAS  Google Scholar 

  10. Colombo B, Longhi R, Marinzi C, Magni F, Cattaneo A, Yoo SH, Curnis F, Corti A (2002) Cleavage of chromogranin A Nterminal domain by plasmin provides a new mechanism for regulating cell adhesion. J Biol Chem 277 (48):45911–45919

    PubMed  CAS  Google Scholar 

  11. Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol 136 (2):217–224

    Article  PubMed  CAS  Google Scholar 

  12. Corti A, Mannarino C, Mazza R, Colombo B, Longhi R, Tota B (2002) Vasostatins exert negative inotropism in the working heart of the frog. Ann NY Acad Sci, pp 362–365

  13. Corti A, Sanchez LP, Gasparri A, Curnis F, Longhi R, Brandazza A, Siccardi AG, Sidoli A (1997) Production and structure characterization of recombinant chromogranin A N-terminal fragments (vasostatins) – evidence of dimer-monomer equilibria. Eur J Biochem 15, 248 (3):692–699

    Google Scholar 

  14. Curry WJ, Johnston CF, Hutton JC, Arden SD, Rutherford NG, Shaw C, Buchanan KD (1991) The tissue distribution of rat chromogranin A-derived peptides: evidence for differential tissue processing from sequence specific antisera. Histochemistry 96 (6):531–538

    Article  PubMed  CAS  Google Scholar 

  15. Georget M, Mateo P, Vandecasteele G, Lipskaia L, Defer N, Hanoune J, Hoerter J, Lugnier C, Fischmeister R (2003) Cyclic AMP compartmentation due to increased cAMP-Phosphodiesterase activity in transgenic mice with a cardiacdirected cyclese type 8 (AC8). FASEB 17:1380–1391

    CAS  Google Scholar 

  16. Helle KB, Angeletti RH (1998) Chromogranins as multifunctional prohormones: A role in protection against excessive responses to stress? In: Kanno T et al. (eds) The Adrenal Chromaffin Cell: Archetype and Exemplar of Cellular Signalling in Secretory Control. Hokkaido University Press, Sapporo, Japan, pp 273–281

  17. Helle KB, Metz-Boutigue MH (2001) Chromogranins A as a calcium-binding precursor for a multitude of regulatory peptides for immune, endocrine and metabolic system. Curr Med Chem 1:119–140

    CAS  Google Scholar 

  18. Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) In.uence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28

    Article  PubMed  CAS  Google Scholar 

  19. Javadov SA, Lim KH, Kerr PM, Suleiman MS, Angelini GD, Halestrap AP (2000) Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45:360–369

    Article  PubMed  CAS  Google Scholar 

  20. Koeslag JH, Saunders PT (2004) The role of Chromogranins and other statins in homeostasis: an explanation of the precise regulation of glucose and ionised calcium in the blood; an overview. Curr Med Chem 4 (3):235–249

    CAS  Google Scholar 

  21. Koeslag JH, Saunders PT, Wessels JA (1999) The chromogranins and the counter-regulatory hormones: do they make homeostatic sense? J Physiol 517 (3):643–649

    Article  PubMed  CAS  Google Scholar 

  22. Legssyer AK, Hove-Madsen L, Hoerter J, Fischmeister R (1997) Sympathetic modulation of the effect of nifedipine on myocardial contraction and Ca current in the rat. J Mol Cell Cardiol 29:579–591

    Article  PubMed  CAS  Google Scholar 

  23. Lugardon K, Raffner R, Goumon Y, Corti Y, Delmas A, Bulet P et al. (2000) Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem 275:10745–10753

    Article  PubMed  CAS  Google Scholar 

  24. Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A (CgA1-40) interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann NY Acad Sci 971:352–354

    Article  PubMed  CAS  Google Scholar 

  25. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100 (6):1623–1633

    Article  PubMed  CAS  Google Scholar 

  26. Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217 (1):247–257

    Article  PubMed  CAS  Google Scholar 

  27. Metz-Boutigue MH, Helle KB, Aunis D (2004) The innate immunity: roles for new antifungal and antibacterial peptides secreted by chromaffin granules from the adrenal medulla. Curr Med Chem 4 (3):169–178

    CAS  Google Scholar 

  28. Müller-Ehmsen J, Nickel J, Zobel C, Hirsch I, Bölck B, Brixius K, Schwinger RHG (2003) Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins. Basic Res Cardiol 98:90–93

    PubMed  Google Scholar 

  29. Raab W (1963) Neurogenic multifocal destruction of myocardial tissue (pathogenic mechanism and its prevention). Rev Can Biol 298:834–836

    Google Scholar 

  30. Ratti S, Curnis F, Longhi R, Colombo B, Gasparri A, Magni F, Manera E, Metz- Boutigue MH, Corti A (2000) Structureactivity relationships of chromogranin A in cell adhesion. Identification of an adhesion site for fibroblasts and smooth muscle cells. J Biol Chem 275 (38):29257–29263

    Article  PubMed  CAS  Google Scholar 

  31. Schiffmann H, Flesch M, Häuseler C, Pfahlberg A, Böhrm M, Hellige G (2002) Effects af different inotropic interventions on myocardial function in the developing rabbit heart. Basic Res Cardiol 97:76–87

    Article  PubMed  CAS  Google Scholar 

  32. Steiner HJ, Weiler R, Ludescher C, Schmid KW, Winkler H (1990) Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem 38 (6):845–850

    PubMed  CAS  Google Scholar 

  33. Stridsberg M, Oberg K, Li Q, Engstrom U, Lundqvist G (1995) Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144:49–59

    Article  PubMed  CAS  Google Scholar 

  34. Teerlink JR, Pfeffer JM, Pfeffer MA (1994) Progressive ventricular remodeling in response to diffuse isoproterenolinduced myocardial necrosis in rats. Circ Res 75:105–13

    PubMed  CAS  Google Scholar 

  35. Tota B, Mazza R, Angelone T, Nullans G, Metz-Boutigue MH, Aunis D, Helle HB (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regul Pept 114:123–130

    Article  PubMed  CAS  Google Scholar 

  36. Turquier V, Vaudry H, Jegou S, Anouar Y (1999) Frog chromogranin A messenger ribonucleic acid encodes three highly conserved peptides. Coordinate regulation of proopiomelanocortin and chromogranin A gene expression in the pars intermedia of the pituitary during background colour adaptation. Endocrinology 140 (9):4104–4112

    Article  PubMed  CAS  Google Scholar 

  37. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the .rst 25 years and future perspectives. Neuroscience 49:497–528

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Cerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerra, M.C., De Iuri, L., Angelone, T. et al. Recombinant N–terminal fragments of chromogranin–A modulate cardiac function of the Langendorff–perfused rat heart. Basic Res Cardiol 101, 43–52 (2006). https://doi.org/10.1007/s00395-005-0547-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0547-2

Key words

Navigation