Skip to main content

Advertisement

Log in

Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Tsukasaki M, Takayanagi H (2019) Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19:626–642. https://doi.org/10.1038/s41577-019-0178-8

    Article  CAS  PubMed  Google Scholar 

  2. Goh C, Narayanan S, Hahn YS (2013) Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol Rev 255:210–221. https://doi.org/10.1111/imr.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiang L, Gilkes DM (2019) The contribution of the immune system in bone metastasis pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms20040999

    Article  PubMed  PubMed Central  Google Scholar 

  4. Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47:100–105

    CAS  PubMed  Google Scholar 

  5. Gabrilovich DI (2017) Myeloid-Derived Suppressor Cells. Cancer. Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.Cir-16-0297

    Article  CAS  Google Scholar 

  6. Binsfeld M, Muller J, Lamour V, De Veirman K, De Raeve H, Bellahcène A, Van Valckenborgh E, Baron F, Beguin Y, Caers J, Heusschen R (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7:37931–43. https://doi.org/10.18632/oncotarget.9270

    Article  Google Scholar 

  7. Yang F, Li Y, Wu T, Na N, Zhao Y, Li W, Han C, Zhang L, Lu J, Zhao Y (2016) TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med (Berl) 94:911–920. https://doi.org/10.1007/s00109-016-1398-z

    Article  CAS  Google Scholar 

  8. Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ (2007) CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:5228–5237. https://doi.org/10.4049/jimmunol.179.8.5228

    Article  CAS  PubMed  Google Scholar 

  9. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244. https://doi.org/10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  10. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802. https://doi.org/10.4049/jimmunol.181.8.5791

    Article  CAS  PubMed  Google Scholar 

  11. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752. https://doi.org/10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A (2021) Recent advances in myeloid-derived suppressor cell biology. Front Med 15:232–251. https://doi.org/10.1007/s11684-020-0797-2

    Article  PubMed  Google Scholar 

  13. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167. https://doi.org/10.1007/s00262-012-1294-5

    Article  CAS  PubMed  Google Scholar 

  16. Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM, Wang X, Mehta JL, Bewtra M, Rustgi A, Hockstein N, Witt R, Masters G, Nam B, Smirnov D, Sepulveda MA, Gabrilovich DI (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rodríguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191. https://doi.org/10.1111/j.1600-065X.2008.00608.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Li C, Liu T, Dai X, Bazhin AV (2020) Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front Immunol 11:1371. https://doi.org/10.3389/fimmu.2020.01371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701. https://doi.org/10.4049/jimmunol.0900092

    Article  CAS  PubMed  Google Scholar 

  20. Su YL, Banerjee S, White SV, Kortylewski M (2018) STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity. Int J Mol Sci. https://doi.org/10.3390/ijms19061803

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Jiang J, Li Z, Zhang J, Wang H, Qin Z (2010) A myeloid cell population induced by Freund adjuvant suppresses T-cell-mediated antitumor immunity. J Immunother 33:167–177. https://doi.org/10.1097/CJI.0b013e3181bed2ba

    Article  CAS  PubMed  Google Scholar 

  22. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, Celis E, Abrams SI, Ozato K, Liu K (2018) An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest 128:5549–5560. https://doi.org/10.1172/jci123360

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chiodoni C, Sangaletti S, Colombo MP (2017) Matricellular proteins tune myeloid-derived suppressor cell recruitment and function in breast cancer. J Leukoc Biol 102:287–292. https://doi.org/10.1189/jlb.3MR1016-447R

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249. https://doi.org/10.4049/jimmunol.182.1.240

    Article  CAS  PubMed  Google Scholar 

  26. Hu CE, Gan J, Zhang RD, Cheng YR, Huang GJ (2011) Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol 46:156–164. https://doi.org/10.3109/00365521.2010.516450

    Article  CAS  PubMed  Google Scholar 

  27. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR–/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547. https://doi.org/10.1111/j.1365-3083.2010.02463.x

    Article  CAS  PubMed  Google Scholar 

  28. Won WJ, Deshane JS, Leavenworth JW, Oliva CR, Griguer CE (2019) Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress 3:47–65. https://doi.org/10.15698/cst2019.02.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li YL, Zhao H, Ren XB (2016) Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol Med 13:206–214. https://doi.org/10.20892/j.issn.2095-3941.2015.0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang SH, Lu QY, Guo YH, Song YY, Liu PJ, Wang YC (2016) The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur J Cancer 68:90–105. https://doi.org/10.1016/j.ejca.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  31. Wu MY, Li CJ, Yiang GT, Cheng YL, Tsai AP, Hou YT, Ho YC, Hou MF, Chu PY (2018) Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem 46:1423–1438. https://doi.org/10.1159/000489184

    Article  CAS  PubMed  Google Scholar 

  32. Marvel D, Gabrilovich DI (2015) 32. J Clin Invest 125:3356–64. https://doi.org/10.1172/jci80005

  33. Chan CY, Yuen VW, Wong CC (2019) Hypoxia and the Metastatic Niche. Adv Exp Med Biol 1136:97–112. https://doi.org/10.1007/978-3-030-12734-3_7

    Article  CAS  PubMed  Google Scholar 

  34. Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, Li Y, Liu H, Yu X, Wang H, Li J, Li Z, Wang XY (2016) Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis 75:278–285. https://doi.org/10.1136/annrheumdis-2014-205508

    Article  CAS  PubMed  Google Scholar 

  35. Pantel K, Alix-Panabières C (2014) Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 3:584. https://doi.org/10.1038/bonekey.2014.79

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176. https://doi.org/10.1053/ctrv.2000.0210

    Article  CAS  PubMed  Google Scholar 

  37. Park SI, Soki FN, McCauley LK (2011) Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron 4:237–246. https://doi.org/10.1007/s12307-011-0081-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fornetti J, Welm AL, Stewart SA (2018) Understanding the bone in cancer metastasis. J Bone Miner Res 33:2099–2113. https://doi.org/10.1002/jbmr.3618

    Article  CAS  PubMed  Google Scholar 

  39. Demirkan B (2013) The roles of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in breast cancer bone metastasis: potential targets for prevention and treatment. J Clin Med 2:264–282. https://doi.org/10.3390/jcm2040264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Todd VM, Johnson RW (2020) Hypoxia in bone metastasis and osteolysis. Cancer Lett 489:144–154. https://doi.org/10.1016/j.canlet.2020.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  42. Sosnoski DM, Norgard RJ, Grove CD, Foster SJ, Mastro AM (2015) Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment. Clin Exp Metastasis 32:335–344. https://doi.org/10.1007/s10585-015-9710-9

    Article  CAS  PubMed  Google Scholar 

  43. Kan C, Vargas G, Pape FL, Clézardin P (2016) Cancer cell colonisation in the bone microenvironment. Int J Mol Sci. https://doi.org/10.3390/ijms17101674

    Article  PubMed  PubMed Central  Google Scholar 

  44. Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16:373–386. https://doi.org/10.1038/nrc.2016.44

    Article  CAS  PubMed  Google Scholar 

  45. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9:e1001162. https://doi.org/10.1371/journal.pbio.1001162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273. https://doi.org/10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  47. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S (2015) EMT and tumor metastasis. Clin Transl Med 4:6. https://doi.org/10.1186/s40169-015-0048-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhu H, Gu Y, Xue Y, Yuan M, Cao X, Liu Q (2017) CXCR2(+) MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget 8:114554–67. https://doi.org/10.18632/oncotarget.23020

    Article  Google Scholar 

  49. Xiao J, Gong Y, Chen Y, Yu D, Wang X, Zhang X, Dou Y, Liu D, Cheng G, Lu S, Yuan W, Li Y, Zhao Z (2017) IL-6 promotes epithelial-to-mesenchymal transition of human peritoneal mesothelial cells possibly through the JAK2/STAT3 signaling pathway. Am J Physiol Renal Physiol 313:F310–F318. https://doi.org/10.1152/ajprenal.00428.2016

    Article  CAS  PubMed  Google Scholar 

  50. Massagué J (2008) TGFbeta in cancer. Cell 134:215–230. https://doi.org/10.1016/j.cell.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, Kotarski J, Tarkowski R, Wicha M, Cho K, Giordano T, Liu R, Zou W (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611–621. https://doi.org/10.1016/j.immuni.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30:668–681. https://doi.org/10.1016/j.ccell.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Ding Y, Guo N, Wang S (2019) MDSCs: key criminals of tumor pre-metastatic niche formation. Front Immunol 10:172. https://doi.org/10.3389/fimmu.2019.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sterling JA, Edwards JR, Martin TJ, Mundy GR (2011) Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone 48:6–15. https://doi.org/10.1016/j.bone.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  55. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12:549–583. https://doi.org/10.1677/erc.1.00543

    Article  CAS  PubMed  Google Scholar 

  56. Brook N, Brook E, Dharmarajan A, Dass CR, Chan A (2018) Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 96:63–78. https://doi.org/10.1016/j.biocel.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  57. Keller ET, Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91:718–729. https://doi.org/10.1002/jcb.10662

    Article  CAS  PubMed  Google Scholar 

  58. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12:6213s-s6216. https://doi.org/10.1158/1078-0432.Ccr-06-1007

    Article  CAS  PubMed  Google Scholar 

  59. Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556. https://doi.org/10.1016/j.ccr.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  60. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  61. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massagué J, Mundy GR, Guise TA (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206. https://doi.org/10.1172/jci3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yogo K, Ishida-Kitagawa N, Takeya T (2007) Negative autoregulation of RANKL and c-Src signaling in osteoclasts. J Bone Miner Metab 25:205–210. https://doi.org/10.1007/s00774-007-0751-2

    Article  PubMed  Google Scholar 

  63. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700. https://doi.org/10.1016/s0092-8674(03)00432-x

    Article  CAS  PubMed  Google Scholar 

  64. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D (2010) Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 116:1406–1418. https://doi.org/10.1002/cncr.24896

    Article  CAS  PubMed  Google Scholar 

  65. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494. https://doi.org/10.1056/NEJMoa030847

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massagué J (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138:51–62. https://doi.org/10.1016/j.cell.2009.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J (2011) Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol 163:220–233. https://doi.org/10.1111/j.1476-5381.2011.01217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yonou H, Horiguchi Y, Ohno Y, Namiki K, Yoshioka K, Ohori M, Hatano T, Tachibana M (2007) Prostate-specific antigen stimulates osteoprotegerin production and inhibits receptor activator of nuclear factor-kappaB ligand expression by human osteoblasts. Prostate 67:840–848. https://doi.org/10.1002/pros.20574

    Article  CAS  PubMed  Google Scholar 

  69. Cramer SD, Chen Z, Peehl DM (1996) Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol 156:526–531. https://doi.org/10.1097/00005392-199608000-00076

    Article  CAS  PubMed  Google Scholar 

  70. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metast Rev 27:41–55. https://doi.org/10.1007/s10555-007-9109-4

    Article  Google Scholar 

  71. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73:672–682. https://doi.org/10.1158/0008-5472.Can-12-2202

    Article  CAS  PubMed  Google Scholar 

  72. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453. https://doi.org/10.1084/jem.20100587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blavier L, Delaissé JM (1995) Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J Cell Sci 108(Pt 12):3649–3659

    Article  CAS  Google Scholar 

  74. Nilforoushan D, Gramoun A, Glogauer M, Manolson MF (2009) Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21:27–36. https://doi.org/10.1016/j.niox.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  75. Sawant A, Ponnazhagan S (2013) Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for controlling osteolytic bone metastasis. Cancer Res 73:4606–4610. https://doi.org/10.1158/0008-5472.Can-13-0305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–285. https://doi.org/10.1016/j.canlet.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  77. Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, Liu Y, Li D, Yuan Y, Zhang GM, Feng ZH (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252:86–92. https://doi.org/10.1016/j.canlet.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  78. Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA (2012) Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 1:1484–1494. https://doi.org/10.4161/onci.21990

    Article  PubMed  PubMed Central  Google Scholar 

  79. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605. https://doi.org/10.1038/35046102

    Article  CAS  PubMed  Google Scholar 

  80. Park S, Lee KJ, Lee EJ, Whang YM, Cho SW (2020) Abstract P5–04–29: Osteoblasts regulate mobilization of the myeloid-derived suppressor cells from the bone marrow of breast cancer patients. In: AACR. https://cancerres.aacrjournals.org/content/80/4_Supplement/P5-04-29

  81. Xu X, Zhang C, Trotter TN, Gowda PS, Lu Y, Ponnazhagan S, Javed A, Li J, Yang Y (2020) Runx2 deficiency in osteoblasts promotes myeloma progression by altering the bone microenvironment at new bone sites. Cancer Res 80:1036–1048. https://doi.org/10.1158/0008-5472.Can-19-0284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rossnagl S, Altrock E, Sens C, Kraft S, Rau K, Milsom MD, Giese T, Samstag Y, Nakchbandi IA (2016) EDA-fibronectin originating from osteoblasts inhibits the immune response against cancer. PLoS Biol 14:e1002562. https://doi.org/10.1371/journal.pbio.1002562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(Suppl 1):33–40

    Article  CAS  Google Scholar 

  84. Zhang H, Huang Y, Wang S, Fu R, Guo C, Wang H, Zhao J, Gaskin F, Chen J, Yang N, Fu SM (2015) Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts. J Autoimmun 65:82–89. https://doi.org/10.1016/j.jaut.2015.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yi H, Guo C, Yu X, Zuo D, Wang XY (2012) Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 189:4295–4304. https://doi.org/10.4049/jimmunol.1200086

    Article  CAS  PubMed  Google Scholar 

  86. Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5–17. https://doi.org/10.1016/j.cyto.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  87. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163. https://doi.org/10.1038/nm1538

    Article  CAS  PubMed  Google Scholar 

  88. Kim KW, Kim HR, Kim BM, Cho ML, Lee SH (2015) Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 185:3011–3024. https://doi.org/10.1016/j.ajpath.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  89. Jiao Z, Hua S, Wang W, Wang H, Gao J, Wang X (2013) Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol 42:85–90. https://doi.org/10.3109/03009742.2012.716450

    Article  CAS  PubMed  Google Scholar 

  90. Jiao Z, Wang W, Jia R, Li J, You H, Chen L, Wang Y (2007) Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol 36:428–433. https://doi.org/10.1080/03009740701482800

    Article  CAS  PubMed  Google Scholar 

  91. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56:4104–4112. https://doi.org/10.1002/art.23138

    Article  CAS  PubMed  Google Scholar 

  92. Yuan FL, Li X, Lu WG, Xu RS, Zhao YQ, Li CW, Li JP, Chen FH (2010) Regulatory T cells as a potent target for controlling bone loss. Biochem Biophys Res Commun 402:173–176. https://doi.org/10.1016/j.bbrc.2010.09.120

    Article  CAS  PubMed  Google Scholar 

  93. Kelchtermans H, Geboes L, Mitera T, Huskens D, Leclercq G, Matthys P (2009) Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 68:744–750. https://doi.org/10.1136/ard.2007.086066

    Article  CAS  PubMed  Google Scholar 

  94. Bozec A, Zaiss MM (2017) T regulatory cells in bone remodelling. Curr Osteoporos Rep 15:121–125. https://doi.org/10.1007/s11914-017-0356-1

    Article  PubMed  Google Scholar 

  95. Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C (2020) The correlation between the Th17/Treg cell balance and bone health. Immun Ageing 17:30. https://doi.org/10.1186/s12979-020-00202-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM, Pacifici R (2018) The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49:1116–31.e7. https://doi.org/10.1016/j.immuni.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang L, Zhang Z, Zhang H, Wu M, Wang Y (2014) Myeloid-derived suppressor cells protect mouse models from autoimmune arthritis via controlling inflammatory response. Inflammation 37:670–677. https://doi.org/10.1007/s10753-013-9783-z

    Article  CAS  PubMed  Google Scholar 

  98. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113. https://doi.org/10.1111/j.1600-065X.2008.00628.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hussein MR, Fathi NA, El-Din AM, Hassan HI, Abdullah F, Al-Hakeem E, Backer EA (2008) Alterations of the CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule-1 in rheumatoid arthritis and osteoarthritis: preliminary observations. Pathol Oncol Res 14:321–328. https://doi.org/10.1007/s12253-008-9016-1

    Article  CAS  PubMed  Google Scholar 

  100. Hot A, Zrioual S, Toh ML, Lenief V, Miossec P (2011) IL-17A- versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes. Ann Rheum Dis 70:341–348. https://doi.org/10.1136/ard.2010.132233

    Article  CAS  PubMed  Google Scholar 

  101. Tran CN, Lundy SK, White PT, Endres JL, Motyl CD, Gupta R, Wilke CM, Shelden EA, Chung KC, Urquhart AG, Fox DA (2007) Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-alpha on cytokine-activated T cells. Am J Pathol 171:1588–1598. https://doi.org/10.2353/ajpath.2007.070004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van Hamburg JP, Corneth OB, Paulissen SM, Davelaar N, Asmawidjaja PS, Mus AM, Lubberts E (2013) IL-17/Th17 mediated synovial inflammation is IL-22 independent. Ann Rheum Dis 72:1700–1707. https://doi.org/10.1136/annrheumdis-2012-202373

    Article  CAS  PubMed  Google Scholar 

  103. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, Dolhain RJ, Lubberts E (2011) Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 63:73–83. https://doi.org/10.1002/art.30093

    Article  CAS  PubMed  Google Scholar 

  104. Brennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BM, Feldmann M (2002) Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor kappaB pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 46:31–41. https://doi.org/10.1002/1529-0131(200201)46:1%3c31::Aid-art10029%3e3.0.Co;2-5

    Article  CAS  PubMed  Google Scholar 

  105. Honorati MC, Cattini L, Facchini A (2007) VEGF production by osteoarthritic chondrocytes cultured in micromass and stimulated by IL-17 and TNF-alpha. Connect Tissue Res 48:239–245. https://doi.org/10.1080/03008200701541767

    Article  CAS  PubMed  Google Scholar 

  106. Honorati MC, Neri S, Cattini L, Facchini A (2006) Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthr Cartil 14:345–352. https://doi.org/10.1016/j.joca.2005.10.004

    Article  CAS  Google Scholar 

  107. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459. https://doi.org/10.1155/2014/561459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park MJ, Lee SH, Kim EK, Lee EJ, Baek JA, Park SH, Kwok SK, Cho ML (2018) Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci Rep 8:3753. https://doi.org/10.1038/s41598-018-21856-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cooles FA, Isaacs JD, Anderson AE (2013) Treg cells in rheumatoid arthritis: an update. Curr Rheumatol Rep 15:352. https://doi.org/10.1007/s11926-013-0352-0

    Article  CAS  PubMed  Google Scholar 

  110. Yudoh K, Matsuno H, Nakazawa F, Yonezawa T, Kimura T (2000) Reduced expression of the regulatory CD4+ T cell subset is related to Th1/Th2 balance and disease severity in rheumatoid arthritis. Arthritis Rheum 43:617–627. https://doi.org/10.1002/1529-0131(200003)43:3%3c617::Aid-anr19%3e3.0.Co;2-b

    Article  CAS  PubMed  Google Scholar 

  111. Umulis D, O’Connor MB, Blair SS (2009) The extracellular regulation of bone morphogenetic protein signaling. Development 136:3715–3728. https://doi.org/10.1242/dev.031534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blaney Davidson EN, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthr Cartil 15:597–604. https://doi.org/10.1016/j.joca.2007.02.005

    Article  CAS  Google Scholar 

  113. Paulissen SM, van Hamburg JP, Dankers W, Lubberts E (2015) The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 74:43–53. https://doi.org/10.1016/j.cyto.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  114. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166

    Article  CAS  PubMed  Google Scholar 

  115. Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, van den Berg WB (2007) Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum 56:147–157. https://doi.org/10.1002/art.22337

    Article  CAS  PubMed  Google Scholar 

  116. Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, Liu X, Shao Y, Zhao C, Pan J, Xu S, Zhang Y, Xie D, Cai D, Bai X (2018) Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis 77:1524–1534. https://doi.org/10.1136/annrheumdis-2018-213450

    Article  CAS  PubMed  Google Scholar 

  117. Zhang H, Wang S, Huang Y, Wang H, Zhao J, Gaskin F, Yang N, Fu SM (2015) Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol 157:175–186. https://doi.org/10.1016/j.clim.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Qian J, Xu L, Sun X, Wang Y, Xuan W, Zhang Q, Zhao P, Wu Q, Liu R, Che N, Wang F, Tan W, Zhang M (2018) Adiponectin aggravates bone erosion by promoting osteopontin production in synovial tissue of rheumatoid arthritis. Arthritis Res Ther 20:26. https://doi.org/10.1186/s13075-018-1526-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gao SG, Li KH, Zeng KB, Tu M, Xu M, Lei GH (2010) Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthr Cartil 18:82–87. https://doi.org/10.1016/j.joca.2009.07.009

    Article  CAS  Google Scholar 

  120. Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH (2008) Bone tissue engineering and repair by gene therapy. Front Biosci 13:833–841. https://doi.org/10.2741/2724

    Article  CAS  PubMed  Google Scholar 

  121. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555. https://doi.org/10.1016/j.injury.2011.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mountziaris PM, Spicer PP, Kasper FK, Mikos AG (2011) Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 17:393–402. https://doi.org/10.1089/ten.TEB.2011.0182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang X, Sarkar K, Rey S, Sebastian R, Andrikopoulou E, Marti GP, Fox-Talbot K, Semenza GL, Harmon JW (2011) Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds. J Mol Med (Berl) 89:985–995. https://doi.org/10.1007/s00109-011-0754-2

    Article  CAS  Google Scholar 

  124. Kawai H, Oo MW, Tsujigiwa H, Nakano K, Takabatake K, Sukegawa S, Nagatsuka H (2021) Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process. Int J Med Sci 18:1824–1830. https://doi.org/10.7150/ijms.51946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ochoa JB, Bernard AC, O’Brien WE, Griffen MM, Maley ME, Rockich AK, Tsuei BJ, Boulanger BR, Kearney PA, Morris SM Jr (2001) Arginase I expression and activity in human mononuclear cells after injury. Ann Surg 233:393–399. https://doi.org/10.1097/00000658-200103000-00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Levy S, Feduska JM, Sawant A, Gilbert SR, Hensel JA, Ponnazhagan S (2016) Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone 93:113–124. https://doi.org/10.1016/j.bone.2016.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang W, Zuo R, Long H, Wang Y, Zhang Y, Sun C, Luo G, Zhang Y, Li C, Zhou Y, Li J (2020) Advances in the Masquelet technique: Myeloid-derived suppressor cells promote angiogenesis in PMMA-induced membranes. Acta Biomater 108:223–236. https://doi.org/10.1016/j.actbio.2020.03.010

    Article  CAS  PubMed  Google Scholar 

  128. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. https://doi.org/10.1038/nm1469

    Article  CAS  PubMed  Google Scholar 

  129. Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal BB, Gravekamp C (2013) Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1. Cancer Med 2:571–582. https://doi.org/10.1002/cam4.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cao Y, Slaney CY, Bidwell BN, Parker BS, Johnstone CN, Rautela J, Eckhardt BL, Anderson RL (2014) BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res 74:5091–5102. https://doi.org/10.1158/0008-5472.Can-13-3171

    Article  CAS  PubMed  Google Scholar 

  131. Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA (2009) Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS ONE 4:e7669. https://doi.org/10.1371/journal.pone.0007669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Simpson KD, Templeton DJ, Cross JV (2012) Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol 189:5533–5540. https://doi.org/10.4049/jimmunol.1201161

    Article  CAS  PubMed  Google Scholar 

  133. Netherby CS, Abrams SI (2017) Mechanisms overseeing myeloid-derived suppressor cell production in neoplastic disease. Cancer Immunol Immunother 66:989–996. https://doi.org/10.1007/s00262-017-1963-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moorman HR, Poschel D, Klement JD, Lu C, Redd PS, Liu K (2020) Osteopontin: a key regulator of tumor progression and immunomodulation. Cancers (Basel). https://doi.org/10.3390/cancers12113379

    Article  Google Scholar 

  135. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. https://doi.org/10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307. https://doi.org/10.1158/0008-5472.Can-06-1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65:9525–9535. https://doi.org/10.1158/0008-5472.Can-05-0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Daurkin I, Eruslanov E, Vieweg J, Kusmartsev S (2010) Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2’-deoxycytidine. Cancer Immunol Immunother 59:697–706. https://doi.org/10.1007/s00262-009-0786-4

    Article  CAS  PubMed  Google Scholar 

  139. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594. https://doi.org/10.1158/1078-0432.Ccr-10-0733

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y, Jia A, Bi Y, Wang Y, Yang Q, Cao Y, Li Y, Liu G (2020) Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers12092626

    Article  PubMed  PubMed Central  Google Scholar 

  141. Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, Paiella S, Salvia R, De Sanctis F, Poffe O, Anselmi C, Hofer F, Sartoris S, Piro G, Carbone C, Corbo V, Lawlor R, Solito S, Pinton L, Mandruzzato S, Bassi C, Scarpa A, Bronte V, Ugel S (2019) Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 7:255. https://doi.org/10.1186/s40425-019-0734-6

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang D, Rennhack J, Andrechek ER, Rockwell CE, Liby KT (2018) Identification of an unfavorable immune signature in advanced lung tumors from Nrf2-deficient mice. Antioxid Redox Signal 29:1535–1552. https://doi.org/10.1089/ars.2017.7201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hiramoto K, Satoh H, Suzuki T, Moriguchi T, Pi J, Shimosegawa T, Yamamoto M (2014) Myeloid lineage-specific deletion of antioxidant system enhances tumor metastasis. Cancer Prev Res (Phila) 7:835–844. https://doi.org/10.1158/1940-6207.Capr-14-0094

    Article  CAS  Google Scholar 

  144. Creelan BC, Gabrilovich DI, Gray JE, Williams CC, Tanvetyanon T, Haura EB, Weber JS, Gibney GT, Markowitz J, Proksch JW, Reisman SA, McKee MD, Chin MP, Meyer CJ, Antonia SJ (2017) Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA 408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. Onco Targets Ther 10:4239–4250. https://doi.org/10.2147/ott.S136992

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812–1823. https://doi.org/10.1158/1078-0432.Ccr-09-3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Romano A, Parrinello NL, La Cava P, Tibullo D, Giallongo C, Camiolo G, Puglisi F, Parisi M, Pirosa MC, Martino E, Conticello C, Palumbo GA, Di Raimondo F (2018) PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy. Expert Rev Mol Diagn 18:675–683. https://doi.org/10.1080/14737159.2018.1470929

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939. https://doi.org/10.1084/jem.20050715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peak TC, Richman A, Gur S, Yafi FA, Hellstrom WJ (2016) The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex Med Rev 4:74–84. https://doi.org/10.1016/j.sxmr.2015.10.004

    Article  PubMed  Google Scholar 

  149. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797. https://doi.org/10.4049/jimmunol.1201449

    Article  CAS  PubMed  Google Scholar 

  150. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, Raubitschek A, Hoon DSB, Forman S, Figlin RA, Liu J, Jove R, Yu H (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–654. https://doi.org/10.1016/j.ccr.2012.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sinha P, Chornoguz O, Clements VK, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL. Blood 117:5381–5390. https://doi.org/10.1182/blood-2010-11-321752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hu X, Bardhan K, Paschall AV, Yang D, Waller JL, Park MA, Nayak-Kapoor A, Samuel TA, Abrams SI, Liu K (2013) Deregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer. J Biol Chem 288:19103–19115. https://doi.org/10.1074/jbc.M112.434530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guha P, Gardell J, Darpolor J, Cunetta M, Lima M, Miller G, Espat NJ, Junghans RP, Katz SC (2019) STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 38:533–548. https://doi.org/10.1038/s41388-018-0449-z

    Article  CAS  PubMed  Google Scholar 

  154. Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, Knight SC, Yagita H, McCaffrey JC, Antonia S, Hockstein N, Witt R, Masters G, Bauer T, Gabrilovich DI (2014) ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest 124:2626–2639. https://doi.org/10.1172/jci74056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu F, Li X, Lu C, Bai A, Bielawski J, Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO, Liu K (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7:83907–25. https://doi.org/10.18632/oncotarget.13438

    Article  Google Scholar 

  156. Smith AD, Lu C, Payne D, Paschall AV, Klement JD, Redd PS, Ibrahim ML, Yang D, Han Q, Liu Z, Shi H, Hartney TJ, Nayak-Kapoor A, Liu K (2020) Autocrine IL6-mediated activation of the STAT3-DNMT axis silences the TNFα-RIP1 necroptosis pathway to sustain survival and accumulation of myeloid-derived suppressor cells. Cancer Res 80:3145–3156. https://doi.org/10.1158/0008-5472.Can-19-3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721. https://doi.org/10.1158/1078-0432.Ccr-05-0883

    Article  CAS  PubMed  Google Scholar 

  158. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061. https://doi.org/10.1158/0008-5472.Can-09-3690

    Article  CAS  PubMed  Google Scholar 

  159. Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC, Ries RE, Aplenc R, Hirsch BA, Raimondi SC, Walter RB, Bernstein ID, Gamis AS, Alonzo TA, Meshinchi S (2017) CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from Randomized Phase III Children’s Oncology Group Trial AAML0531. J Clin Oncol 35:2674–2682. https://doi.org/10.1200/jco.2016.71.2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liang H, Shen X (2020) LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells. Biochem Biophys Res Commun 528:330–335. https://doi.org/10.1016/j.bbrc.2020.04.137

    Article  CAS  PubMed  Google Scholar 

  161. Qin H, Lerman B, Sakamaki I, Wei G, Cha SC, Rao SS, Qian J, Hailemichael Y, Nurieva R, Dwyer KC, Roth J, Yi Q, Overwijk WW, Kwak LW (2014) Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med 20:676–681. https://doi.org/10.1038/nm.3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Edgington-Mitchell LE, Rautela J, Duivenvoorden HM, Jayatilleke KM, van der Linden WA, Verdoes M, Bogyo M, Parker BS (2015) Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer. Oncotarget 6:27008–22. https://doi.org/10.18632/oncotarget.4714

    Article  PubMed  Google Scholar 

  163. Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z (2020) The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 28:101309. https://doi.org/10.1016/j.redox.2019.101309

    Article  CAS  PubMed  Google Scholar 

  164. Sawant A, Ponnazhagan S (2013) Myeloid-derived suppressor cells as a novel target for the control of osteolytic bone disease. Oncoimmunology 2:e24064. https://doi.org/10.4161/onci.24064

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115:1531–1543. https://doi.org/10.1002/cncr.24121

    Article  PubMed  Google Scholar 

  166. Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, Kunisada T, Ozaki T, Udono H (2019) Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 31:187–198. https://doi.org/10.1093/intimm/dxy079

    Article  CAS  PubMed  Google Scholar 

  167. Jiang K, Li J, Zhang J, Wang L, Zhang Q, Ge J, Guo Y, Wang B, Huang Y, Yang T, Hao D, Shan L (2019) SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy. Int Immunopharmacol 75:105818. https://doi.org/10.1016/j.intimp.2019.105818

    Article  CAS  PubMed  Google Scholar 

  168. Shi X, Li X, Wang H, Yu Z, Zhu Y, Gao Y (2019) Specific inhibition of PI3Kδ/γ enhances the efficacy of anti-PD1 against osteosarcoma cancer. J Bone Oncol 16:100206. https://doi.org/10.1016/j.jbo.2018.11.001

    Article  PubMed  Google Scholar 

  169. Guan Y, Zhang R, Peng Z, Dong D, Wei G, Wang Y (2017) Inhibition of IL-18-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy against osteosarcoma cancer. J Bone Oncol 9:59–64. https://doi.org/10.1016/j.jbo.2017.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  170. Deng C, Xu Y, Fu J, Zhu X, Chen H, Xu H, Wang G, Song Y, Song G, Lu J, Liu R, Tang Q, Huang W, Wang J (2020) Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma. Cancer Sci 111:1899–1909. https://doi.org/10.1111/cas.14398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, El-Etriby R, Galli S, Tsokos MG, Orentas RJ, Mackall CL (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 4:869–880. https://doi.org/10.1158/2326-6066.Cir-15-0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ligon JA, Choi W, Cojocaru G, Fu W, Hsiue EH, Oke TF, Siegel N, Fong MH, Ladle B, Pratilas CA, Morris CD, Levin A, Rhee DS, Meyer CF, Tam AJ, Blosser R, Thompson ED, Suru A, McConkey D, Housseau F, Anders R, Pardoll DM, Llosa N (2021) Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001772

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kraan MC, Reece RJ, Smeets TJ, Veale DJ, Emery P, Tak PP (2002) Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: Implications for pathogenesis and evaluation of treatment. Arthritis Rheum 46:2034–2038. https://doi.org/10.1002/art.10556

    Article  PubMed  Google Scholar 

  174. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, Aslani S (2019) Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 234:10018–10031. https://doi.org/10.1002/jcp.27860

    Article  CAS  PubMed  Google Scholar 

  175. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038. https://doi.org/10.1016/s0140-6736(16)30173-8

    Article  CAS  PubMed  Google Scholar 

  176. Kurkó J, Vida A, Ocskó T, Tryniszewska B, Rauch TA, Glant TT, Szekanecz Z, Mikecz K (2014) Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow. PLoS ONE 9:e111815. https://doi.org/10.1371/journal.pone.0111815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sun J, Xu P, Du X, Zhang Q, Zhu Y (2015) Piperlongumine attenuates collagen-induced arthritis via expansion of myeloid-derived suppressor cells and inhibition of the activation of fibroblast-like synoviocytes. Mol Med Rep 11:2689–2694. https://doi.org/10.3892/mmr.2014.3001

    Article  CAS  PubMed  Google Scholar 

  178. Zhu D, Tian J, Wu X, Li M, Tang X, Rui K, Guo H, Ma J, Xu H, Wang S (2019) G-MDSC-derived exosomes attenuate collagen-induced arthritis by impairing Th1 and Th17 cell responses. Biochim Biophys Acta Mol Basis Dis 1865:165540. https://doi.org/10.1016/j.bbadis.2019.165540

    Article  CAS  PubMed  Google Scholar 

  179. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15:1066–1071. https://doi.org/10.1038/nm.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Miller RJ, Malfait AM, Miller RE (2020) The innate immune response as a mediator of osteoarthritis pain. Osteoarthr Cartil 28:562–571. https://doi.org/10.1016/j.joca.2019.11.006

    Article  CAS  Google Scholar 

  181. Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2012) Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 83:315–323. https://doi.org/10.1016/j.bcp.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  182. Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJ, Poubelle PE, Centola M, El-Gabalawy H (2010) Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med 38:1845–1856. https://doi.org/10.1177/0363546510369547

    Article  PubMed  Google Scholar 

  183. Marik PE, Flemmer M (2012) The immune response to surgery and trauma: Implications for treatment. J Trauma Acute Care Surg 73:801–808. https://doi.org/10.1097/TA.0b013e318265cf87

    Article  CAS  PubMed  Google Scholar 

  184. Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35:1003–1012. https://doi.org/10.1016/j.bone.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  185. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV (2013) Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 57:484–492. https://doi.org/10.1016/j.bone.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  186. Boros P, Ochando JC, Chen SH, Bromberg JS (2010) Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum Immunol 71:1061–1066. https://doi.org/10.1016/j.humimm.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang J, Hodges A, Chen SH, Pan PY (2021) Myeloid-derived suppressor cells as cellular immunotherapy in transplantation and autoimmune diseases. Cell Immunol 362:104300. https://doi.org/10.1016/j.cellimm.2021.104300

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Medical Innovation of Graduate Students in Chongqing (Grant No. CYS19360).

Author information

Authors and Affiliations

Authors

Contributions

ZGL and CY were major contributors in writing the manuscript. ZGL, CD and CY created all the figures and tables. ZGL, JLT and CY performed literature search. ZGL and YQC made substantial contributions to the design of the manuscript and revised it critically for important intellectual content. All authors have read and approved the final version of this manuscript.

Corresponding author

Correspondence to Yueqi Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Z., Yang, C., Tan, J. et al. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell. Mol. Life Sci. 78, 7161–7183 (2021). https://doi.org/10.1007/s00018-021-03966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03966-9

Keywords

Navigation