Skip to main content

Advertisement

Log in

Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast cancer can reoccur, often as bone metastasis, many years if not decades after the primary tumor has been treated. The factors that stimulate dormant metastases to grow are not known, but bone metastases are often associated with skeletal trauma. We used a dormancy model of MDA-MB-231BRMS1, a metastasis-suppressed human breast cancer cell line, co-cultured with MC3T3-E1 osteoblasts in a long term, three dimensional culture system to test the hypothesis that bone remodeling cytokines could stimulate dormant cells to grow. The cancer cells attached to the matrix produced by MC3T3-E1 osteoblasts but grew slowly or not at all until the addition of bone remodeling cytokines, TNFα and IL-β. Stimulation of cell proliferation by these cytokines was suppressed with indomethacin, an inhibitor of cyclooxygenase and of prostaglandin production, or a prostaglandin E2 (PGE2) receptor antagonist. Addition of PGE2 directly to the cultures also stimulated cell proliferation. MCF-7, non-metastatic breast cancer cells, remained dormant when co-cultured with normal human osteoblast and fibroblast growth factor. Similar to the MDA-MB-231BRMS1 cells, MCF-7 proliferation increased in response to TNFα and IL-β. These findings suggest that changes in the bone microenvironment due to inflammatory cytokines associated with bone repair or excess turnover may trigger the occurrence of latent bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeSantis C et al (2013) Breast cancer statistics, 2013. Cancer J Clin 64(1):52–62

    Article  Google Scholar 

  2. Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49

    Article  CAS  PubMed  Google Scholar 

  3. Demicheli R et al (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4(12):699–710

    Article  PubMed  Google Scholar 

  4. Lipton A et al (2009) The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Cancer Netw 7(Suppl 7):S1–S29 quiz S30

    CAS  Google Scholar 

  5. Rubens RD (2000) Bone metastases–incidence and complications. In: Rubens RD, Mundy GR (eds) Cancer and the skeleton. Martin Dunitz, London 286

  6. Naumov GN, Folkman J, Straume O (2009) Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis 26(1):51–60

    Article  PubMed  Google Scholar 

  7. Demicheli R et al (2008) Recurrence dynamics does not depend on the recurrence site. Breast Cancer Res 10(5):R83

    Article  PubMed Central  PubMed  Google Scholar 

  8. Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19(3):276–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Article  CAS  PubMed  Google Scholar 

  10. Pantel K et al (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85(17):1419–1424

    Article  CAS  PubMed  Google Scholar 

  11. Hedley BD, Chambers AF (2009) Tumor dormancy and metastasis. Adv Cancer Res 102:67–101

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi H, Muto Y, Tashiro H (2009) Clinicopathological characteristics of recurrence more than 10 years after surgery in patients with breast carcinoma. Anticancer Res 29(8):3445–3448

    PubMed  Google Scholar 

  13. Pantel K et al (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9(17):6326–6334

    CAS  PubMed  Google Scholar 

  14. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8(5):329–340

    Article  CAS  PubMed  Google Scholar 

  15. Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    Article  CAS  PubMed  Google Scholar 

  16. Das Roy L et al (2009) Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 11(4):R56

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yano S (2014) Metastatic bone lesion due to methotrexate and etanercept 24 years after breast cancer treatment. BMJ Case Rep. doi:10.1136/bcr-2013-202615

    PubMed  Google Scholar 

  18. Rotolo N et al (2013) Metastasis at a tracheostomy site as the presenting sign of late recurrent breast cancer. Head Neck 35(11):E359–E362

    Article  PubMed  Google Scholar 

  19. Demicheli R et al (2008) The effects of surgery on tumor growth: a century of investigations. Ann Oncol 19(11):1821–1828

    Article  CAS  PubMed  Google Scholar 

  20. Schneider A et al (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736

    Article  CAS  PubMed  Google Scholar 

  21. Tashjian AH Jr, Gagel RF (2006) Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res 21(3):354–365

    Article  CAS  PubMed  Google Scholar 

  22. Mundy GR et al (2008) Cytokines and bone remodeling. In: Marus R et al (eds) Osteoporosis. Editors Academic Press, New York, pp 491–528

    Chapter  Google Scholar 

  23. Dhurjati R et al (2006) Extended-term culture of bone cells in a compartmentalized bioreactor. Tissue Eng 12(11):3045–3054

    Article  CAS  PubMed  Google Scholar 

  24. Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14:911–915

    Article  CAS  PubMed  Google Scholar 

  25. Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69(10):4097

    Article  CAS  PubMed  Google Scholar 

  26. Phillips KK et al (1996) Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res 56(6):1222–1227

    CAS  PubMed  Google Scholar 

  27. Krishnan V et al (2011) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226(8):2150–2158

    Article  CAS  PubMed  Google Scholar 

  28. Phadke PA et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172(3):809–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sosnoski DM et al (2012) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012:160265

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang H et al (1997) Basic fibroblast growth factor causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res 57(9):1750–1757

    CAS  PubMed  Google Scholar 

  31. Sato K et al (1986) Stimulation of prostaglandin E2 and bone resorption by recombinant human interleukin 1 alpha in fetal mouse bones. Biochem Biophys Res Commun 138(2):618–624

    Article  CAS  PubMed  Google Scholar 

  32. Sato K et al (1987) Tumor necrosis factor type alpha (cachectin) stimulates mouse osteoblast-like cells (MC3T3-E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun 145(1):323–329

    Article  CAS  PubMed  Google Scholar 

  33. Bai X et al (2013) Prostaglandin E(2) receptor EP1-mediated phosphorylation of focal adhesion kinase enhances cell adhesion and migration in hepatocellular carcinoma cells. Int J Oncol 42(5):1833–1841

    CAS  PubMed  Google Scholar 

  34. Sudo H et al (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96(1):191–198

    Article  CAS  PubMed  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  36. Pilbeam CC, Harrison JR, Raisz LG (2002) Prostaglandins and bone metabolism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, New York

    Google Scholar 

  37. Mundy GR et al (2001) Cytokines and bone remodeling. In: Marcus RE, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, New York, pp 373–403

    Chapter  Google Scholar 

  38. Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297(3):1051–1058

    CAS  PubMed  Google Scholar 

  39. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506

    Article  CAS  PubMed  Google Scholar 

  40. Oshima H, Oshima M (2012) The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 47(2):97–106

    Article  CAS  PubMed  Google Scholar 

  41. Najmi S et al (2005) Flavopiridol blocks integrin-mediated survival in dormant breast cancer cells. Clin Cancer Res 11(5):2038–2046

    Article  CAS  PubMed  Google Scholar 

  42. Phadke PA, Mercer RR, Harms JF, Jia Y, Kappes JC, Frost AR, Jewell JL, Bussard KM, Nelson S, Moore C, Gay CV, Mastro AM, Welch DR (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440

    Article  PubMed Central  PubMed  Google Scholar 

  43. Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21(5):294–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ristimaki A et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635

    CAS  PubMed  Google Scholar 

  45. Singh B et al (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26(26):3789–3796

    Article  CAS  PubMed  Google Scholar 

  46. Schrey MP, Patel KV (1995) Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 72(6):1412–1419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cicek M et al (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res 65(9):3586–3595

    Article  CAS  PubMed  Google Scholar 

  48. Klein DC, Raisz LG (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86(6):1436–1440

    Article  CAS  PubMed  Google Scholar 

  49. Planchon P et al (1995) Evidence for separate mechanisms of antiproliferative action of indomethacin and prostaglandin on MCF-7 breast cancer cells. Life Sci 57(12):1233–1240

    Article  CAS  PubMed  Google Scholar 

  50. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  CAS  PubMed  Google Scholar 

  52. Shiozawa Y et al (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22(5):941–950

    Article  CAS  PubMed  Google Scholar 

  53. Mirza AA et al (2014) MEKK2 regulates focal adhesion stability and motility in invasive breast cancer cells. Biochim Biophys Acta 1843(5):945–954

    Article  CAS  PubMed  Google Scholar 

  54. Khoon MCS (2015) Experimental models of bone metastasis: opportunities for the study of cancer dormancy. Adv Deliv Rev. doi:10.1016/j.addr.2015.02.007

    Google Scholar 

Download references

Acknowledgments

This work was supported by a pilot grant from METAvivor and by the U.S. Army Medical and Materiel Command Breast Cancer Idea Program, Grant W81WH-1s2-1-0127. We thank Dr. K. Sandeep Prabhu for thoughtful discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Mastro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnoski, D.M., Norgard, R.J., Grove, C.D. et al. Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment. Clin Exp Metastasis 32, 335–344 (2015). https://doi.org/10.1007/s10585-015-9710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9710-9

Keywords

Navigation