Skip to main content

Advertisement

Log in

Mechanisms overseeing myeloid-derived suppressor cell production in neoplastic disease

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Perturbations in myeloid cell differentiation are common in neoplasia, culminating in immature populations known as myeloid-derived suppressor cells (MDSCs). MDSCs favor tumor progression due to their ability to suppress host immunity or promote invasion and metastasis. They are thought to originate from the bone marrow as a result of exposure to stromal- or circulating tumor-derived factors (TDFs). Although great interest has been placed on understanding how MDSCs function, less is known regarding how MDSCs develop at a transcriptional level. Our work explores the premise that MDSCs arise because cancer cells, through the production of certain TDFs, inhibit the expression of interferon regulatory factor-8 (IRF8) that is ordinarily essential for controlling fundamental properties of myeloid cell differentiation. Our interest in IRF8 has been based on the following rationale. First, it is well-recognized that IRF8 is a ‘master regulator’ of normal myelopoiesis, critical not only for producing monocytes, dendritic cells (DCs), and neutrophils, but also for controlling the balance of all three major myeloid cell types. This became quite evident in IRF8−/− mice, whereby the loss of IRF8 leads to a disproportionate accumulation of neutrophils at the expense of monocytes and DCs. Second, we showed that such myeloid populations from IRF8−/− mice exhibit similar characteristics to MDSCs from tumor-bearing mice. Third, in a reciprocal fashion, we showed that enforced expression of IRF8 in the myeloid system significantly mitigates tumor-induced MDSC accumulation and improves immunotherapy efficacy. Altogether, these observations support the hypothesis that IRF8 is an integral negative regulator of MDSC biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATRA:

All-trans-retinoic acid

C/EBP:

CCAAT/enhancer binding protein

GMP:

Granulocyte–monocyte progenitor

IRF8:

Interferon regulatory factor-8

NTB:

Non-tumor-bearing

PMN:

Polymorphonuclear

PPARγ:

Peroxisome proliferator-activated receptor-γ

RORC1:

Retinoic-acid-related orphan receptor C1

TDF:

Tumor-derived factor

WT:

Wild-type

References

  1. Bronte V, Brandau S, Chen SH et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Condamine T, Mastio J, Gabrilovich DI (2015) Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 98:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Messmer MN, Netherby CS, Banik D, Abrams SI (2015) Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother 64:1–13

    Article  CAS  PubMed  Google Scholar 

  5. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sagiv JY, Michaeli J, Assi S et al (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–573

    Article  CAS  PubMed  Google Scholar 

  8. Wu WC, Sun HW, Chen HT et al (2014) Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci USA 111:4221–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodriguez PC, Ernstoff MS, Hernandez C et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waight JD, Netherby C, Hensen ML et al (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 123:4464–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Templeton AJ, McNamara MG, Seruga B et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106:dju124

    Article  PubMed  Google Scholar 

  12. Sonda N, Chioda M, Zilio S, Simonato F, Bronte V (2011) Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr Opin Immunol 23:279–285

    Article  CAS  PubMed  Google Scholar 

  13. Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One 6:e27690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Solito S, Falisi E, Diaz-Montero CM et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Almand B, Resser JR, Lindman B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    CAS  PubMed  Google Scholar 

  17. Capietto AH, Kim S, Sanford DE et al (2013) Down-regulation of PLCgamma2-beta-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. J Exp Med 210:2257–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farren MR, Carlson LM, Netherby CS et al (2014) Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCbetaII abundance. Sci Signal 7:ra16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Papaspyridonos M, Matei I, Huang Y et al (2015) Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat Commun 6:6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abrams SI, Waight JD (2012) Identification of a G-CSF-Granulocytic MDSC axis that promotes tumor progression. Oncoimmunology 1:550–551

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paschall AV, Zhang R, Qi CF et al (2015) IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 194:2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart TJ, Abrams SI (2007) Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J Immunol 179:2851–2859

    Article  CAS  PubMed  Google Scholar 

  23. Stewart TJ, Greeneltch KM, Reid JE et al (2009) Interferon regulatory factor-8 modulates the development of tumour-induced CD11b+ Gr-1+ myeloid cells. J Cell Mol Med 13:3939–3950

    Article  PubMed  Google Scholar 

  24. Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI (2009) Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+ Gr-1+ myeloid cells. J Immunol 183:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waight JD, Banik D, Griffiths EA, Nemeth MJ, Abrams SI (2014) Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia. J Biol Chem 289:15642–15652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holtschke T, Lohler J, Kanno Y et al (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87:307–317

    Article  CAS  PubMed  Google Scholar 

  27. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K (2000) ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13:155–165

    Article  CAS  PubMed  Google Scholar 

  28. Schiavoni G, Mattei F, Sestili P et al (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196:1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsujimura H, Nagamura-Inoue T, Tamura T, Ozato K (2002) IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. J Immunol 169:1261–1269

    Article  CAS  PubMed  Google Scholar 

  30. Aliberti J, Schulz O, Pennington DJ et al (2003) Essential role for ICSBP in the in vivo development of murine CD8alpha+ dendritic cells. Blood 101:305–310

    Article  CAS  PubMed  Google Scholar 

  31. Tsujimura H, Tamura T, Gongora C et al (2003) ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 101:961–969

    Article  CAS  PubMed  Google Scholar 

  32. Tsujimura H, Tamura T, Ozato K (2003) Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 170:1131–1135

    Article  CAS  PubMed  Google Scholar 

  33. Watowich SS, Liu YJ (2010) Mechanisms regulating dendritic cell specification and development. Immunol Rev 238:76–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Becker AM, Michael DG, Satpathy AT, Sciammas R, Singh H, Bhattacharya D (2012) IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119:2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamura T, Kurotaki D, Koizumi S (2015) Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 101:342–351

    Article  CAS  PubMed  Google Scholar 

  36. Hambleton S, Salem S, Bustamante J et al (2011) IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salem S, Langlais D, Lefebvre F et al (2014) Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation. Blood 124:1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurotaki D, Osato N, Nishiyama A et al (2013) Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood 121:1839–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurotaki D, Yamamoto M, Nishiyama A et al (2014) IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat Commun 5:4978

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Yan M, Sun J et al (2014) A reporter mouse reveals lineage-specific and heterogeneous expression of IRF8 during lymphoid and myeloid cell differentiation. J Immunol 193:1766–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Nguyen-Jackson H, Panopoulos AD, Li HS, Murray PJ, Watowich SS (2010) STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116:2462–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314

    Article  CAS  PubMed  Google Scholar 

  43. Panopoulos AD, Watowich SS (2008) Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine 42:277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirai H, Zhang P, Dayaram T et al (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7:732–739

    Article  CAS  PubMed  Google Scholar 

  45. Marigo I, Bosio E, Solito S et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802

    Article  CAS  PubMed  Google Scholar 

  46. Strauss L, Sangaletti S, Consonni FM et al (2015) RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell 28:253–269

    Article  CAS  PubMed  Google Scholar 

  47. Wu L, Yan C, Czader M et al (2012) Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119:115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Haas N, de Koning C, Spilgies L, de Vries IJ, Hato SV (2016) Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncoimmunology 5:e1196312

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kusmartsev S, Su Z, Heiser A et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  CAS  PubMed  Google Scholar 

  50. Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY (2012) The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 131:741–751

    Article  CAS  PubMed  Google Scholar 

  51. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank all the current and past members of the Abrams Lab for their outstanding support and contributions to this work. This work was supported by R01CA140622 and R01CA172105 from the National Cancer Institute/NIH (to Scott Abrams) and NIH training grant T32CA085183 (to Colleen Netherby).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott I. Abrams.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest related to this work.

Additional information

This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th–19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netherby, C.S., Abrams, S.I. Mechanisms overseeing myeloid-derived suppressor cell production in neoplastic disease. Cancer Immunol Immunother 66, 989–996 (2017). https://doi.org/10.1007/s00262-017-1963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1963-5

Keywords

Navigation