Skip to main content

Quinoa: Role and Responses Under Abiotic Stress

  • Chapter
  • First Online:
Sustainable Remedies for Abiotic Stress in Cereals

Abstract

Quinoa (Chenopodium quinoa Willd.) is a hereditarily distinct Andean crop that has received remarkable interest globally owing to its nutritional and health advantages. It is extremely tolerant to harsh environmental conditions, for instance, salt- and water-deficit agroecosystems. Salinity along with drought constitute the major abiotic environmental cues examined in quinoa, whereas additional stressors like heat, frost, heavy metals, waterlogging, and UV-B light are relatively less examined. Moreover, stresses usually act in combinations of two or more. Presently, large gaps exist in our knowledge regarding quinoa’s response to several abiotic stresses, particularly at the molecular level. Even as large genetic variability exists in quinoa species, substantial exploration is necessitated to exploit this genetic diversity. With the recent publication of quinoa reference genome, categorization of genes responsible for abiotic stress tolerance would be intensely facilitated, and a genetic approach should assist in improving our knowledge of varied abiotic stress tolerance mechanisms operative in quinoa, ultimately leading to better propagation approaches. By way of these advances, quinoa has great potential for providing sustainable solutions needed for food safety issues in dry and semi-dry areas worldwide. More or less, not much research has been carried out on quinoa, and relatively lesser has been carried out to explicate the genetics supporting quinoa’s endurance to abiotic factors. With this background, the chapter aims to present (1) a brief overview of quinoa’s history, botanical features, distribution, and economic importance and (2) a recent understanding of the responses and tolerance of quinoa to different abiotic stress factors, focusing on physiological and biochemical responses, possible molecular machinery, and genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelbar OH (2018) Flower vascularization and fruit developmental anatomy of quinoa (Chenpodium quinoa Willd) Amaranthaceae. Ann Agric Sci 63(1):67–75

    Article  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  Google Scholar 

  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Ahmadi SH, Solgia S, Sepaskhaha AR (2019) Quinoa: a super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric Water Manag 225:105784

    Article  Google Scholar 

  • Alam SB, Rochon D (2017) Evidence that Hsc70 is associated with cucumber necrosis virus particles and plays a role in particle disassembly. J Virol 91(2):e01555-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali OI, Fghire R, Anaya F, Benlhabib O, Wahbi S (2019) Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71(2):123–133

    Article  Google Scholar 

  • Al-Naggar AMM, Abd El-Salam RM, Badran AE, El-Moghazi MMA (2017) Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J Adv Agric Res 3:1–15

    Google Scholar 

  • Alvar-Beltrán J, Verdi L, Marta AD, Dao A, Vivoli R, Sanou J, Orlandini S (2020) The effect of heat stress on quinoa (cv. Titicaca) under controlled climatic conditions. J Agric Sci 158(4):255–261

    Article  Google Scholar 

  • Alvarez-Flores R, Winkel T, Nguyen-Thi-Truc A, Joffre R (2014) Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species. Plant Soil 380:415–428

    Article  CAS  Google Scholar 

  • Alvarez-Flores R, Nguyen-Thi-Truc A, Peredo-Parada S, Joffre R, Winkel T (2018) Rooting plasticity in wild and cultivated Andean Chenopodium species under soil water deficit. Plant Soil 425:479–492

    Article  CAS  Google Scholar 

  • Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem 119:770–778

    Article  CAS  Google Scholar 

  • Angeli V, Silva PM, Massuela DC, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C (2020) Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the “Golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9(2):216

    Article  CAS  PubMed Central  Google Scholar 

  • Banerjee K, Gatti RC, Mitra A (2017) Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 46(4):492–499

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Rhodes T, Tran KNT, Wijesinghege C, Larkin JC, Dassanayake M (2018) Making epidermal bladder cells bigger: developmental- and salinity-induced endopolyploidy in a model halophyte. Plant Physiol 177(2):615–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barut M, Nadeem MA, Karakoy T, Baloch FS (2020) DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For 44:479–491

    Article  CAS  Google Scholar 

  • Bascuñán-Godoy L, Sanhueza C, Pinto K, Cifuentes L, Reguera M, Briones V, Zurita-Silva A, Álvarez R, Morales A, Silva H (2018) Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Sci Rep 8:17524

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazile D, Baudon F (2015) The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 42–55

    Google Scholar 

  • Becker VI, Goessling JW, Duarte B, Caçador I, Liu F, Rosenqvist E, Jacobsen S-E (2017) Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct Plant Biol 44:665–678

    Article  CAS  PubMed  Google Scholar 

  • Benlhabib O, Jacobsen SE, Jellen EN, Maughan PJ, Choukr-Allah R (2015) Status of quinoa production and research in Morocco. In: Bazile D, Bertero D, Nieto C (eds) State of the art report on quinoa around the world in 2013. FAO & CIRAD, Rome, pp 178–491

    Google Scholar 

  • Benlhabib O, Boujartani N, Maughan PJ, Jacobsen SE, Jellen EN (2016) Elevated genetic diversity in an F2:6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front Plant Sci 7:1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertero H (2001) Effects of photoperiod, temperature and radiation on the rate of leaf appearance in quinoa (Chenopodium quinoa Willd.) under field conditions. Ann Bot 87:495–502

    Article  Google Scholar 

  • Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:87–97

    Article  Google Scholar 

  • Bertero D, Medan D, Hall AJ (1996) Changes in apical morphology during floral initiation and reproductive development in quinoa (Chenopodium quinoa Willd.). Ann Bot 78(3):317–324

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999a) Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Res 63(1):19–34

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999b) Photoperiod-sensitivedevelopment phases in quinoa (Chenopodium quinoa Willd.). Field Crops Res 60(3):231–243

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (2000) Photoperiod and temperature effects on the rate of leaf appearance in quinoa (Chenopodium quinoa). Funct Plant Biol 27:349–356

    Article  Google Scholar 

  • Bhargava A, Ohri D (2016) Origin of genetic variability and improvement of quinoa (Chenopodium quinoa Willd.). In: Rajpal V, Rao S, Raina S (eds) Gene Pool diversity and crop improvement: sustainable development and biodiversity. Springer, Cham, pp 241–270

    Chapter  Google Scholar 

  • Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D (2008) Genetic diversity for mineral accumulation in the foliage of Chenopodium spp. Sci Hortic 118:338–346

    Article  CAS  Google Scholar 

  • Blanco Callisaya JA (2015) Fodder and animal feed. Chapter 3.2. In: Bazile D, Bertero D, Nieto C (eds) State of the art report on quinoa around the world in 2013. FAO & CIRAD, Rome, pp 250–266

    Google Scholar 

  • Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S et al (2018) Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Curr Biol 28:3075–3085

    Article  PubMed  Google Scholar 

  • Bois JF, Winkel T, Lhomme JP, Raffaillac JP, Rocheteau A (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Article  Google Scholar 

  • Bonales-Alatorre E, Pottosin I, Shabala L, Chen Z-H, Zeng F, Jacobsen S-E, Shabala S (2013a) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. Int J Mol Sci 14:9267–9285

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen Z-H, Pottosin I (2013b) Reduced tonoplast fast activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162:940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinegar C, Sine B, Nwokocha L (1996) High-Cysteine 2S seed storage proteins from quinoa (Chenopodium quinoa). J Agric Food Chem 44:1621–1623

    Article  CAS  Google Scholar 

  • Bunce JA (2017) Variation in yield responses to elevated CO2 and a brief high temperature treatment in quinoa. Plants 6:26

    Article  PubMed Central  Google Scholar 

  • Bunce JA (2018) Thermal acclimation of the temperature dependence of the VCmax of Rubisco in quinoa. Photosynthetica 56(4):1171–1176

    Article  CAS  Google Scholar 

  • Burrieza HP, Koyro H-W, Tosar LM, Kobayashi K, Maldonado S (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. Cv Hualhuas embryos. Plant Soil 354:69–79

    Article  CAS  Google Scholar 

  • Cai Z-Q, Gao Q (2020) Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol 20:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capraro J, De Benedetti S, Di Dio M, Bona E, Abate A, Corsetto PA (2020) Characterization of chenopodin isoforms from quinoa seeds and assessment of their potential anti-inflammatory activity in Caco-2 cells. Biomol Ther 10:795

    CAS  Google Scholar 

  • Carciochi RA, D’Alessandro LG, Manrique GD (2016) Effect of roasting conditions on the antioxidant compounds of quinoa seeds. Int J Food Sci Technol 51:1018–1025

    Article  CAS  Google Scholar 

  • Cardenas M (1944) Descripción preliminar de las variedades de Chenopodium quinoa de Bolivia. Revista de Agricultura. Universidad Mayor San Simón de Cochabamba, Cochabamba, vol 2(2), pp 13–26

    Google Scholar 

  • Cháb D, Kolár J, Olson MS, Storchová H (2008) Two flowering locus T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228:929–940

    Article  PubMed  Google Scholar 

  • Choukr-Allah R, Rao NK, Hirich A, Shahid M, Alshankiti A, Toderich K (2016) Quinoa for marginal environments: toward future food and nutritional security in Middle East North Africa (MENA) and Central Asia regions. Front Plant Sci 7:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5:82–95

    Article  CAS  Google Scholar 

  • Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curti RN, Andrade AJ, Bramardi S, Velásquez B, Daniel Bertero H (2012) Ecogeographic structure of phenotypic diversity in cultivated populations of quinoa from Northwest Argentina: quinoa phenotypic diversity in Northwest Argentina. Ann Appl Biol 160:114–125

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delatorre-Herrera J, Gonzalez JL, Martinez E (2015) Efecto del fotoperiodo y la temperartura sobre la concentracion de saponina en tres variedades de quinua (Chenopodium quinoa) provenientes de tres latitudes. In: V Congreso Mundial de la Quinua y II Simposio Internacional de Granos Andinos; San Salvador de Jujuy, Argentina, p 70

    Google Scholar 

  • Deng S, Ma J, Zhang L, Chen F, Sang Z, Jia Z, Ma L (2019) De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biol 19(1):321

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR (2015) Traversing organizational scales in plant salt-stress responses. Curr Opin Plant Biol 23:70–75

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Sleimi N, Caçador I (2014) Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. Front Plant Sci 5:746

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebel C, BenFeki A, Hanin M, Solano R, Chini A (2018) Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance. PLoS One 13(7):e0200566

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust J Crop Sci 6:357–368

    CAS  Google Scholar 

  • Fajardo-Rojas A (2019) Variabilidad climática y disponibilidad hídrica en los valles de Ubaté, Chiquinquira y Alto Chicamocha, Colombia [Climate variability and water availability in the valleys of Ubaté, Chiquinquira and Alto Chicamocha, Colombia]. Acta Agron 68(3):182–195

    Article  Google Scholar 

  • Fghire R (2014) Effet du déficit hydrique sur le comportement écophysiologique et agronomique du quinoa (Chenopodium quinoa). PhD thesis, Université Cadi Ayyad, Marrekech

    Google Scholar 

  • Fghire R, Anaya F, Ali OI, Benlhabib O, Ragab R, Wahbi S (2015) Physiological and photosynthetic response of quinoa to drought stress. Chilean J Agric Res 75(2):174–183

    Article  Google Scholar 

  • Filho AMM, Pirozi MR, Borges JTDS, Sant’Ana HMP, Chaves JBP, Coimbra JSDR (2017) Quinoa: nutritional, functional and antinutritional aspects. Crit Rev Food Sci Nutr 57(8):1618–1630

    Article  PubMed  Google Scholar 

  • Fischer S, Wilckens R, Jara J, Aranda M (2013) Variation in antioxidant capacity of quinoa (Chenopodium quinoa Will) subjected to drought stress. Ind Crop Prod 46:341–349

    Article  CAS  Google Scholar 

  • Fischer S, Wilckens R, Jara J, Aranda M, Valdivia W, Bustamante L, Graf F, Obal I (2017) Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Ind Crop Prod 107:558–564

    Article  CAS  Google Scholar 

  • Flores JE, Mamani, Alarcón V, Paco V, Rojas W (2008) Caracterización de los conocimientos tradicionales asociados a la agrobiodiversidad en Coromata Media y Santiago de Okola. Informe Octubre 2007 – Junio 2008. NUS IFAD II. Fundación PROINPA. La Paz – Bolivia, pp 129–143

    Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-López D, Quila-Vivas N, Balaguera-López HE (2020) Techniques applied in agricultural research to quantify nitrogen fixation: a systematic review. Corpoica Ciencia y Tecnología Agropecuaria 21(1):e1342

    Google Scholar 

  • Fuentes F, Bhargava A (2011) Morphological analysis of quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci 197:124–134

    Article  Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    Article  CAS  Google Scholar 

  • Fuentes FF, Bazile D, Bhargava A, Martinez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150:702–716

    Article  Google Scholar 

  • Fuentes-Bazan S, Uotila P, Borsch T (2012) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(1):5–24

    Article  Google Scholar 

  • Garcia-Parra M, Roa-Acosta D, Stechauner-Rohringer R, García-Molano JF, Bazile D, Plazas-Leguizamón N (2020) Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): a review on a global scale. Sylwan 164(5):411–433

    Google Scholar 

  • Geissler N, Hussin S, El-Far MM, Koyro HW (2015) Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ Exp Bot 118:67–77

    Article  CAS  Google Scholar 

  • Golicz AA, Steinfort U, Arya H, Singh MB, Bhalla PL (2020) Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Funct Integr Genomics 20:245–258

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627

    Article  PubMed  Google Scholar 

  • González JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009a) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stress: dry matter partitioning. Bot Stud 50:35–42

    Google Scholar 

  • González JA, Rosa M, Parrado MF, Hilal M, Prado FE (2009b) Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV–B in a lowland location. J Photochem Photobiol B 96:144–151

    Article  PubMed  Google Scholar 

  • González JA, Bruno M, Valoy M, Prado FE (2011) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. J Agron Crop Sci 197:81–93

    Article  Google Scholar 

  • González JA, Eisa SSS, Hussin SAES, Prado FE (2015) Quinoa: an incan crop to face global changes in agriculture. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 1–18

    Google Scholar 

  • González JA, Hinojosa L, Mercado MI, Fernández-Turiel JL, Bazile D, Ponessa GI, Eisa S, González DA, Rejas M, Hussin S, El-Samad EHA, Abdel-Ati A, Ebrahim MEA (2021) A long journey of CICA-17 quinoa variety to salinity conditions in Egypt: mineral concentration in the seeds. Plants 10:407

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Teuber M, Vilo C, Bascuñán-Godoy L (2017) Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom Data 11:109–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordillo-Bastidas E, Díaz-Rizzolo D, Roura E, Massanes T, Gomis R (2016) Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci 6:497

    Google Scholar 

  • Grenfell-Shaw L, Tester M (2021) Abiotic stress tolerance in quinoa. In: Schmöckel SM (ed) The quinoa genome (compendium of plant genomes). Springer, Cham. https://doi.org/10.1007/978-3-030-65237-1_9

    Chapter  Google Scholar 

  • Guarino F, Ruiz KB, Castiglione S, Cicatelli A, Biondi S (2020) The combined effect of Cr(III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Ecotoxicol Environ Saf 193:110345

    Article  CAS  PubMed  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plant grown at various salinity levels. J Exp Bot 62(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T (2020) Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant J 103(1):32–52

    Article  CAS  PubMed  Google Scholar 

  • Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, Massa EM, González JA, Prado FE (2004) Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem Photobiol 79:205–210

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM (2018) Quinoa abiotic stress responses: a review. Plants (Basel) 7(4):106

    Article  CAS  Google Scholar 

  • Hinojosa L, Matanguihan J, Murphy K (2019) Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J Agron Crop Sci 205(1):33–45

    Article  Google Scholar 

  • Hirich A (2016) Phenotyping the combined effect of heat and water stress on quinoa introduction. In: International quinoa conference: quinoa for future food and nutrition security in marginal environments, Dubai, United Arab Emirates, pp 6–8

    Google Scholar 

  • Hong S-Y, Cheon K-S, Yoo K-O, Lee H-h, Cho K-S, Suh J-T, Kim S-J, Nam J-H, Sohn H-B, Kim Y-H (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front Plant Sci 8:1696

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossein-pour A, Haliloglu K, Ozkan G, Tan M (2019) Genetic diversity and population structure of quinoa (Chenopodium quinoa willd.) using IPBS-retrotransposons markers. Appl Ecol Environ Res 17(2):1899–1911

    Article  Google Scholar 

  • Imamura T, Takagi H, Miyazato A, Ohki S, Mizukoshi H, Mori M (2018) Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochem Biophys Res Commun 496(2):280–286

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Yasui Y, Koga H, Takagi H, Abe A, Nishizawa K, Mizuno N, Ohki S, Mizukoshi H, Mori M (2020) A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun Biol 3:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal S, Basra SMA, Saddiq MS, Yang A, Akhtar SS, Jacobsen SE (2020) The extraordinary salt tolerance of quinoa. In: Hirich A, Choukr-Allah R, Ragab R (eds) Emerging research in alternative crops, Environment and policy, vol 58. Springer, Cham, pp 125–143

    Chapter  Google Scholar 

  • Isobe K, Uziie K, Hitomi S, Furuya U (2012) Agronomic studies on quinoa (Chenopodium quinoa Willd.) cultivation in Japan. Jpn J Crop Sci 81:167–172

    Article  Google Scholar 

  • Isobe K, Nakajima E, Morita N, Kawakura S, Masao H (2019) Effects of NaCl on growth and cesium absorption in quinoa (Chenopodium quinoa Willd.). Water Air Soil Pollut 230:66

    Article  Google Scholar 

  • Jacobsen SE (2015) Adaptation and scope for quinoa in northern latitudes of Europe. In: Bazile D, Bertero HD, Nieto C (eds) State of the art report on quinoa around the world in 2013. FAO & CIRAD, Rome, pp 436–446

    Google Scholar 

  • Jacobsen S-E, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Article  Google Scholar 

  • Jacobsen S, Mujica A, Jensen CR (2006) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19(1–2):99–109

    Google Scholar 

  • Jacobsen S-E, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Article  Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287

    Article  CAS  Google Scholar 

  • Jain G, Schwinn KE, Gould KS (2015) Betalain induction by l-DOPA application confers photoprotection to saline-exposed leaves of Disphyma australe. New Phytol 207:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • James LEA (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58:1–31

    Article  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA et al (2017) The genome of Chenopodium quinoa. Nature 542:307–312

    Article  CAS  PubMed  Google Scholar 

  • Jayme-Oliveira A, Júnior WQR, Ramos MLG, Ziviani A, Jakelaitis A (2017) Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesqui Agropecu Bras 52:561–571

    Article  Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae, Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  • Kalaji HM, Baba W, Gediga K, Goltsev V, Samborska IA, Cetner MD, Dimitrova S, Piszcz U, Bielecki K, Karmowska K, Dankov K, Kompala-Baba A (2018) Chorophyll fluorescence as tool for nutrient status identification in rapeseed plants. Photosyn Res 136(3):329–343

    Article  CAS  Google Scholar 

  • Katschnig D, Bliek T, Rozema J, Schat H (2015) Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Sci 234:144–154

    Article  CAS  PubMed  Google Scholar 

  • Killi D, Haworth M (2017) Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants 6(4):49

    Article  PubMed Central  Google Scholar 

  • Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogen Evol 100:109–123

    Article  CAS  Google Scholar 

  • Kolano B, McCann J, Oskedra M, Chrapek M, Rojek M, Nobis A, Weiss-Schneeweiss H (2019) Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa 392:23

    Article  Google Scholar 

  • Krak K, Vít P, Belyayev A, Douda J, Hreusová L, Mandák B (2016) Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): a molecular and cytogenetic insight. PLoS One 11:e0161063

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari PH, Kumar SA, Sivan P, Katam R, Suravajhala P, Rao KS, Varshney RK, Kishor PBK (2017) Overexpression of a plasma membrane bound Na+/H+ antiporter-like protein (SbNHXLP) confers salt tolerance and improves fruit yield in tomato by maintaining ion homeostasis. Front Plant Sci 7:2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesjak J, Calderini DF (2017) Increased night temperature negatively affects grain yield, biomass and grain number in Chilean quinoa. Front Plant Sci 8:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang QY, Wu YH, Wang K, Bai ZY, Liu QL, Pan YZ, Zhang L, Jiang B-B (2017) Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci Rep 7(1):4799

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang R, Liu W, Zhang H, Guo Y, Wen R (2018) Genome-wide characterization of heat-shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes 9(2):35

    Article  PubMed Central  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliro MFA, Guwela VF, Nyaika J, Murphy KM (2017) Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front Plant Sci 8:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamedi A, Tavakkol Afshari R, Oveisi M (2017) Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iran J Field Crop Sci 48:89–100

    Google Scholar 

  • Manaa A, Goussia R, Derbalia W, Cantamessac S, Abdellya C, Barbatoc R (2019) Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environ Exp Bot 162:103–114

    Article  CAS  Google Scholar 

  • Massawe F, Mayes S, Cheng A (2016) Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci 21:365–368

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, Jarvis DE (2019) Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Sci Rep 9:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Toyoshima M, Fujita M, Fukuda S, Kobayashi Y, Ueno M, Tanaka K, Tanaka T, Nishihara E, Mizukoshi H, Yasui Y, Fujita Y (2020) The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res 27(4):dssa022

    Article  Google Scholar 

  • Monroy M, Maceda-Veiga A, de Sostoa A (2014) Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Sci Total Environ 487:233–244

    Article  CAS  PubMed  Google Scholar 

  • Montes-Rojas C, Guido-Catuche B, Muñoz-Certuche E, Calderón-Yonda Y (2018) Descripción del ciclo fenológico de cuatro ecotipos de (Chenopodium quinoa Willd.), en Puracé-Cauca, Colombia. Biotecnología en el Sector Agropecuario y Agroindustrial 16(2):26–37

    Article  Google Scholar 

  • Morales A, Zurita-Silva A, Maldonado J, Silva H (2017) Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns. Front Plant Sci 8:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Morillo AC, Manjarres EH, Reyes WL, Morillo Y (2020) Molecular characterization of intrapopulation genetic diversity in Chenopodium quinoa (Chenopodiaceae). Genet Mol Res 19(4):GMR18667

    Article  Google Scholar 

  • Mujica A (1992) Granos y leguminosas andinas. In: Hernandez J, Bermejo J, Leon J (eds) Cultivos marginados: otra perspectiva de 1492. Organización de la Naciones Unidas para la Agricultura y la Alimentación FAO, Rome, pp 129–146

    Google Scholar 

  • Multari S, Marsol-Vall A, Keskitalo M, Yang B, Suomela J (2018) Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J Food Compos Anal 72:75–82

    Article  CAS  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops – what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Müntz K (1996) Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J Exp Bot 47:605–622

    Article  Google Scholar 

  • Muscolo A, Panuccio MR, Gioffrè AM, Jacobsen S-E (2016) Drought and salinity differently affect growth and secondary metabolites of ‘Chenopodium quinoa Willd’ seedlings. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Elsevier, San Diego, pp 259–275

    Chapter  Google Scholar 

  • Noulas C, Tziouvalekas M, Vlachostergios D, Baxevanos D, Karyotis T, Iliadis C (2017) Adaptation, agronomic potential, and current perspectives of quinoa under mediterranean conditions: case studies from the lowlands of Central Greece. Commun Soil Sci Plant Anal 48:2612–2629

    CAS  Google Scholar 

  • Nowak V, Du J, Charrondière UR (2016) Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem 193:47–54

    Article  CAS  PubMed  Google Scholar 

  • Okumuş E, Temiz MA (2021) Chemical composition and health effects of quinoa: a review. Eur Food Sci Eng 2(2):34–39

    Google Scholar 

  • Olukosi OA, Walker RL, Houdijk JGM (2019) Evaluation of the nutritive value of legume alternatives to soybean meal for broiler chickens. Poult Sci 98(11):5778–5788

    Article  CAS  PubMed  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831

    Article  CAS  PubMed  Google Scholar 

  • Palenque E, Andrade M, González JA, Hilal M, Prado FE (1997) Efectos de la radiación ultravioleta sobre la quinoa (Chenopodium quinoa Willd.). Rev Boliv Fis 3:120–128

    Google Scholar 

  • Perez ML, González JA, Prado FE (2015) Efectos de la radiación ultravioleta B (UVB) sobre diferentes variedades de Quinoa: I. Efectos sobre la morfología en condiciones controladas. Bol Soc Argent Botánica 50:337–347

    Article  Google Scholar 

  • Peterson A, Murphy KM (2015) Quinoa cultivation for temperate North America: considerations and areas for investigation. In: Murphy KM, Matanguihan J (eds) Quinoa: improvement and sustainable production, 1st edn. Wiley, Hoboken, pp 173–192

    Chapter  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    Article  CAS  PubMed  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Pineli LLO, Botelho RBA, Zandonadi RP, Solorzano JL, de Oliveira GT, Reis CGE, Teixeira DDS (2015) Low glycemic index and increased protein content in a novel quinoa milk. LWT - Food Sci Technol 63:1261–1267

    Article  CAS  Google Scholar 

  • Prado FE, González JA, Perez ML (2016) Efectos de la radiación ultravioleta B (UV-B) sobre diferentes variedades de Quinoa: II.- efectos sobre la síntesis de pigmentos fotosintéticos, protectores y azúcares solubles en condiciones controladas. Bol Soc Argent Botánica 51:665–673

    Article  Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Article  Google Scholar 

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and nonsaline irrigation regimes: quinoa resistance to abiotic stress. J Agron Crop Sci 198:254–263

    Article  CAS  Google Scholar 

  • Rane J, Pradhan A, Aher L, Singh NP (2019) ICAR-NIASM publications, ICAR-NIASM, Baramati, p 12

    Google Scholar 

  • Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall JA, Jellen EN, Bonfacio A, Fairbanks DJ, Maughan PJ (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5:338–357

    Article  CAS  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen S-E, Andersen MN (2011a) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197(5):348–360

    Article  Google Scholar 

  • Razzaghi F, Ahmadi SH, Jensen CR, Jacobsen S-E, Andersen MN (2011b) The salt tolerance of quinoa measured under field conditions. In: International congress on irrigation and drainage, Teheran, Iran, 15–23 October 2011, pp149–153

    Google Scholar 

  • Razzaghi F, Plauborg F, Jacobsen SE, Jensen CR, Andersen MN (2012) Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Manag 109:20–29

    Article  Google Scholar 

  • Razzaghi F, Jacobsen S-E, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought – mechanisms of tolerance. Funct Plant Biol 42:136–148

    Article  CAS  PubMed  Google Scholar 

  • Reguera M, Conesa CM, Gil-Gómez A, Haros CM, Pérez-Casas MÁ, Briones-Labarca L, Bolaños L, Bonilla I, Álvarez R, Pinto K, Mujica A, Bascuñán-Godoy L (2018) The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6:e4442

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes TH, Scartazza A, Castagna A, Cosio EG, Ranieri A, Guglielminetti L (2018) Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. Sci Rep 8:371

    Article  Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 417–435

    Google Scholar 

  • Rodríguez-Hernández MDC, Morcillo L, Garmendia I (2021) Sensitivity of quinoa cv. ‘Titicaca’ to low salinity conditions. Folia Hortic 33(1):135–145

    Article  Google Scholar 

  • Rojas W (1998) Análisis de la diversidad genética del germoplasma de quinua (Chenopodium quinoa Willd.) de Bolivia, mediante métodos multivariados. Tesis M.Sc., Universidad Austral de Chile, Facultad de Ciencias Agrarias, Valdivia—Chile, p 209

    Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2004) Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings. J Plant Physiol 161(6):683–689

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    Article  CAS  PubMed  Google Scholar 

  • Ruffino AMC, Rosa M, Hilal M, González JA, Prado FE (2010) The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil 326:213–224

    Article  CAS  Google Scholar 

  • Ruiz KB, Aloisi I, Duca SD, Canelo V, Torrigiani P, Silva H, Biondi S (2016a) Salares versus coastal ecotypes of quinoa: salinity responses in Chilean landraces from contrasting habitats. Plant Physiol Biochem 101:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen S-E (2016b) Quinoa - a model crop for understanding salt tolerance mechanisms in halophytes. Plant Biosyst 150:357–371

    Article  Google Scholar 

  • Ruiz KB, Rapparini F, Bertazza G, Silva H, Torrigiani P, Biondi F (2017) Comparing salt-induced responses at the transcript level in a Salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd). Environ Exp Bot 139:127–142

    Article  CAS  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro M, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Saeed MS, Saeed A, Iqbal M, Adnan M (2020) Nutritional benefits of quinoa—a review. Ind J Pure Appl Biosci 8(6):624–627

    Article  Google Scholar 

  • Saleem MA, Basra SMA, Afzal I, ur-Rehman H, Iqbal S, Saddiq MS, Naz S (2017) Exploring the potential of quinoa accessions for salt tolerance in soilless culture. Int J Agric Biol 19:233–240

    Article  CAS  Google Scholar 

  • Sanabria K, Lazo H (2018) Aclimatación a la alta temperatura y tolerancia al calor (TL50) en 6 variedades de Chenopodium quinoa. Rev Peru Biol 25:147–152

    Article  Google Scholar 

  • Scanlin L, Lewis KA (2016) Quinoa as a sustainable protein source: production, nutrition, and processing. In: Sustainable protein sources. Academic, Cambridge, pp 223–238

    Google Scholar 

  • Schlick G, Bubenheim DL (1993) Quinoa: an emerging “new” crop with potential for CELSS. NASA technical paper. Moffett Field 3422:1–9

    Google Scholar 

  • Schmöckel SM, Lightfoot DJ, Razali R, Tester M, Jarvis DE (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Front Plant Sci 8:1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Scoccianti V, Bucchini AE, Iacobucci M, Ruiz KB, Biondi S (2016) Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. Ecotoxicol Environ Saf 133:25–35

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signaling. J Exp Bot 60(3):709–712

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–187

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol Concepts 2:407–419

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pang JY, Percey W, Chen ZH, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  CAS  PubMed  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa Willd). Physiol Plant 146:26–38

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen S-E (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170:906–914

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Gu M (2020) Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biol 20:568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Bhatnagar GS, Shukla AK, Verma SK, Supriya A, Meena RK (2021) A review: nutritional, medicinal and economic importance of quinoa. Curr Res Agric Far 2(2):5–8

    Article  Google Scholar 

  • Sircelj MR, Rosa M, Parrado MF, González JA, Hilal M, Prado FE (2002) Ultrastructural and metabolic changes induced by UV-B radiation in cotyledons of quinoa. Biocell 26:180

    Google Scholar 

  • Soria MM, Marcial, Peñalosa M (1990) Lavado de quinua, procesos y prototipos. Seminario taller sobre investigación en posproducción de quinua en Ecuador. INIAP, UTA, CIID, Quito, pp 23–34

    Google Scholar 

  • Štorchová H, Drabešová J, Cháb D, Kolář J, Jellen EN (2015) The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genetic Res Crop Evol 62:913–925

    Article  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta Bioenerg 1797:1313–1326

    Article  CAS  Google Scholar 

  • Strenske A, de Vasconcelos ES, Egewarth VA, Herzog NFM, Malavasi MM (2017) Responses of quinoa (Chenopodium quinoa willd.) seeds stored under different germination temperatures. Acta Sci Agron 39:83–88

    Article  Google Scholar 

  • Sun Y, Liu F, Bendevis M, Shabala S, Jacobsen S-E (2014) Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. J Agron Crop Sci 200:12–23

    Article  CAS  Google Scholar 

  • Talebnejad R, Sepaskhah AR (2016) Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity. Arch Agron Soil Sci 62(10):1347–1367

    Article  CAS  Google Scholar 

  • Tanwar B, Goyal A, Irshaan S, Kumar V, Sihag MK, Patel A, Kaur I (2019) Quinoa. In: Whole grains and their bioactives. Wiley, Chichester, pp 269–305

    Chapter  Google Scholar 

  • Tapia M (2015) The long journey of Quinoa: who wrote its history. In: Bazile D, Bertero HD, Nieto C (eds) State of the art report on Quinoa around the world 2013. FAO and CIRAD, Rome, pp 1–7

    Google Scholar 

  • Tashi G, Zhan H, Xing G, Chang X, Zhang H, Nie X, Ji W (2018) Genome-wide identification and expression analysis of heat shock transcription factor family in Chenopodium quinoa Willd. Agronomy 8:103

    Article  CAS  Google Scholar 

  • Thomas EC, Lavkulich LM (2015) Community considerations for quinoa production in the urban environment. Can J Plant Sci 95:397–404

    Article  CAS  Google Scholar 

  • Toderich KN, Mamadrahimov AA, Khaitov BB, Karimov AA, Soliev AA, Nanduri KR, Shuyskaya EV (2020) Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids and squalene composition of new quinoa genotype, grown in hyper-arid desert environments. Front Plant Sci 11:607102

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  PubMed  Google Scholar 

  • Veloza C, Romero Guerrero G, Gómez Pie-Dras JJ (2016) Morphoagronomic response and protein quality of three accessions of quinoa (Chenopodium quinoa Willd.) in the northern sabana of Bogota. Rev UDCA Act Div Cient 19(2):325–332

    Google Scholar 

  • Vidueiros SM, Curti RN, Dyner LM, Binaghi MJ, Peterson G, Bertero HD, Pallaro AN (2015) Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J Cereal Sci 62:87–93

    Article  Google Scholar 

  • Villacrés E, Quelal M, Galarza S, Iza D, Silva E (2022) Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN (2015) Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot 102(4):533–543

    Article  PubMed  Google Scholar 

  • Walters H, Carpenter-Boggs L, Desta K, Yan L, Matanguihan J, Murphy K (2016) Effect of irrigation, intercrop, and cultivar on agronomic and nutritional characteristics of quinoa. Agroecol Sustain Food Syst 40:783–803

    Article  Google Scholar 

  • Wang K, Li L, Li S, Sun H, Zhao M, Zhang M, Wang Y (2017) Characterization of the complete chloroplast genome of Chenopodium quinoa Willd. Mitochondrial DNA B Resour 2(2):812–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Wania SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Waseem M, Rong X, Li Z (2019) Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front Plant Sci 10:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson HD (1988) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson C, Read JJ, Abo-Kassem E (2002) Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. J Plant Nutr 25(12):2689–2704

    Article  CAS  Google Scholar 

  • Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431:1–17

    Article  CAS  Google Scholar 

  • Yang A, Akhtar SS, Amjad M, Iqbal S, Jacobsen S-E (2016) Growth and physiological responses of quinoa to drought and temperature stress. J Agron Crop Sci 202:445–453

    Article  CAS  Google Scholar 

  • Yang X, Zhao T, Rao P, Gao K, Yang X, Chen Z, An X (2019) Transcriptome profiling of Populus tomentosa under cold stress. Ind Crop Prod 135:283–293

    Article  CAS  Google Scholar 

  • Yasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M, Tanaka K, Mise K, Tanaka T, Mizukoshi H, Mori M, Fujita Y (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 23:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Gu M, Liu Y, Lv Y, Zhou L, Lu H, Liang S, Bao H, Zao H (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome resequencing. BMC Genomics 18:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Zurita-Silva A, Fuentes F, Zamora P, Jacobsen S-E, Schwember AR (2014) Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol Breed 34(1):13–30

    Article  Google Scholar 

  • Zurita-Silva A, Jacobsen S-E, Fatemeh R, Ricardo A-F, Karina R, Andrea M, Herman SA (2015) Quinoa drought responses and adaptation, Chapter 2.4. In: Bazile D, Bertero D, Nieto C (eds) State of the art report on quinoa around the world in 2013. FAO/CIRAD, Santiago, pp 157–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, H., Sunkaria, B., Garg, N. (2022). Quinoa: Role and Responses Under Abiotic Stress. In: Abdel Latef, A.A.H. (eds) Sustainable Remedies for Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-5121-3_10

Download citation

Publish with us

Policies and ethics