Skip to main content
Log in

Varietal differences of quinoa’s tolerance to saline conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study aimed to assess varietal differences of quinoa’s tolerance to salinity and to investigate physiological mechanisms conferring these differences.

Methods

Production of biomass in fourteen varieties grown under saline conditions was analysed in a pot experiment. For two contrasting varieties, the Danish variety Titicaca and the Bolivian variety Utusaya gas exchange, chlorophyll content index (CCI), fluorescence and ion relations were studied.

Results

Responses to salinity differed greatly among the varieties; least affected were two varieties from the Bolivian altiplano and a variety from Peru. Titicaca and Utusaya both had substantially increased K+ concentrations in the leaf sap. But, Utusaya was much more efficient in restricting xylem Na+ loading. Xylem Na+ and K+ loading were found to be uncoupled. Utusaya maintained a relatively high stomatal conductance resulting in an only 25% NaCl-induced reduction in net CO2 assimilation compared to a 67% reduction in salt treated Titicaca plants. Maximum photochemical efficiency of PSII was not affected by salinity.

Conclusion

In addition to maintaining high gas exchange, tolerant varieties better control xylem Na+ loading. To what extent this control is related to radial root Na+ uptake or to the activity of Na+/H+-exchangers at the xylem parenchyma boundary remains to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adolf VI, Jacobsen SE, Liu F, Jensen CR, Andersen MN (2010) Effects of salinity in two contrasting quinoa cultivars. In: Memorias III Congreso Mundial de la Quinua, 16–19 March 2010, Oruro, Bolivia, p. 110

  • Akram M, Farooq S, Afzaal M, Naz F, Arshad R (2006) Chlorophyll fluorescence in different wheat genotypes grown under salt stress. Pakistan J Bot 38(5):1739–1743

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Bosque Sanchez H, Lemeur R, Van Damme P, Jacobsen SE (2003) Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1&2):111–119

    Article  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Christiansen JL, Jacobsen S-E, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agriculturae Scandinavica, Section B, Plant Soil Science, 1–6.

  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:1110–1119

    Article  CAS  Google Scholar 

  • Cuin TA, Bose J, Stefano G, Jha DA, Tester M, Mancuso S, Shabala S (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34(6):947–961

    Article  PubMed  CAS  Google Scholar 

  • Daniells LG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolour) and soil salinity under field conditions. Aust J Exp Agr 41:211–217

    Article  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in Durum Wheat. Plant Physiol 137:807–818

    Article  PubMed  CAS  Google Scholar 

  • Engels C, Marschner H (1992) Adaptation of potassium translocation into the shoot of maize (Zea mays) to shoot demand: Evidence for xylem loading as a regulating step. Physiol Plantarum 86(2):263–268

    Article  Google Scholar 

  • FAO (1998) Under-utilized Andean Food Crops. FAO, Rome

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  PubMed  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. University of New South Wales Press, Ltd., Canberra

    Google Scholar 

  • Gómez-Pando LR, Àlvarez-Castro R, Equiluz-de la Barra A (2010) Effect of salt stress on Peruvian Germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci 196:391–396

    Article  Google Scholar 

  • González JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Bot Stud 50:35–42

    Google Scholar 

  • González JA, Bruno M, Valoy M, Prado FE (2010) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. J Agron Crop Sci. doi:10.1111/j.1439-037X.2010.00446.x

  • Hamada AM, El-Enany AE (1994) Effect of NaCl salinity on growth. Pigment and mineral element contents, and gas exchange of broad and pea plants. Biol Plant 36:75–81

    Article  CAS  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 1–9. doi:10.1093/jxb/erq257

  • Heuer B (2006) Photosynthetic carbon metabolism of crops under salt stress. In: Pessarakli M (ed) Handbook of photosynthesis. Taylor & Francis group, Boca Raton, pp 779–792

    Google Scholar 

  • Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157–171

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture: studies on developmental pattern. Euphytica 96:41–48

    Article  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1–2):167–177

    Article  Google Scholar 

  • Jacobsen SE (2011) The situation for Quinoa and its production in Southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci. doi:10.1111/j.1439-037X.2011.00475.x

  • Jacobsen SE, Mujica A (2003) Quinoa: an alternative crop for saline soils. J Exp Bot 54(suppl 1):i25

    Google Scholar 

  • Jacobsen SE, Quispe H, Mujica A (2001) Quinoa: an alternative crop for saline soils in the Andes. In: Scientists and Farmer-Partners in Research for the 21st Century. CIP Program Report 1999–2000, pp. 403–408.

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26(4):471–475

    Article  Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122(2):281–287

    Article  CAS  Google Scholar 

  • Jamil M, ur Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES (2007a) Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci Agric (Piracicaba Braz) 64(2):111–118

    Article  CAS  Google Scholar 

  • Jamil M, Rehman S, Rha ES (2007b) Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta Vulgaris L.) and cabbage (Brassica Oleracea Capitata L.). Pakistan J Bot 39(3):753–760

    Google Scholar 

  • Jensen CR, Jacobsen SE, Andersen MN, Nuñez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gas exchange and water relations of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur J Argon 13:11–25

    Google Scholar 

  • Jimenez MS, Gonzalez-Rodriguez AM, Morales D, Cid MC, Socorro AR, Caballefro M (1997) Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica 33(2):291–301

    Article  CAS  Google Scholar 

  • Khan MA, Shirazi MU, Ali Khan M, Mujtaba SM, Islam E, Mumtaz S, Shereen A, Ansari RU, Yasin Ashraf M (2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pakistan J Bot 41(2):633–638

    Google Scholar 

  • Koyro HW, Geißler N, Hussin S, Huchzermeyer B (2008) Survival at extreme locations: Life strategies of halophytes—The long way from system ecology, whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites. In: Abdelly C, Ötztürck M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser Verlag, Switzerland, pp 1–20

    Chapter  Google Scholar 

  • Lapina LP, Popov BA (1970) Effect of sodium chloride on photosynthetic apparatus of tomatoes. Fiziologia Rastenii 17:580–584

    CAS  Google Scholar 

  • Marenco RA, Antezana-Vera SA, Nascimento HCS (2009) Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica 47(2):184–190

    Article  Google Scholar 

  • Marschner H (1995) Saline soils. In: Mineral nutrition of higher plants. Academic Press, New York, pp. 657–680

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Garcia FV, Laza RC, Cassman KG (1993) Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agron J 85:987–990

    Article  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Salinity: environment–plants–molecules. In: Läuchli A, Lüttge (eds) Kluwer Academic Publishers, Netherlands, pp. 3–20.

  • Plett DC, Moller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626

    Article  CAS  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Article  Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition. Hill reaction activity and saccharides metabolism in bajra (Penisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19(1–2):179–189

    Article  Google Scholar 

  • Richards RA (1983) Should selection for yield in saline regions be made on saline or non-saline soils. Euphytica 32:431–438

    Article  Google Scholar 

  • Rojas W, Soto JL, Carrasco E (2004) Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. Proinpa Foundation, La Paz

    Google Scholar 

  • Rosa M, Hilal M, Gonzalez JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    Article  PubMed  CAS  Google Scholar 

  • Ruffino AMC, Rosa M, Hilal M, Gonzalez JA, Prado FE (2010) The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil 326:213–224

    Article  CAS  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103:93–99

    Article  CAS  Google Scholar 

  • Shabala S (2000) Ionic and Osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–838

    Article  CAS  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  PubMed  CAS  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–711

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shabala S, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25:609–616

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 14:1653–1665

    Article  Google Scholar 

  • Shabala S, Cuin TA, Pang JY, Percey W, Chen ZH, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  PubMed  CAS  Google Scholar 

  • Singh MP, Pandey SK, Singh M, Ram PC, Singh BB (1990) Photosynthesis, transpiration, stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodic conditions. Photosynthetica 24:623–627

    CAS  Google Scholar 

  • Smethurst CF, Shabala S (2003) Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol 30:335–343

    Article  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  • Wegner LH, de Boer AH (1997) Properties of two outwardrectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance-signaling. Plant Physiol 115:1707–1719

    PubMed  CAS  Google Scholar 

  • Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock—implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ 34:859–869

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Read JJ, Abo KE (2002) Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. J Plant Nutr 25(12):2689–2704

    Article  CAS  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the EU 7th Framework Programme through the project “Sustainable water use securing food production in dry areas of the Mediterranean region”, and to the two university faculties involved in this work, which are Aarhus University, Faculty of Science and Technology, and the University of Copenhagen, Faculty of Life Sciences. Sergey Shabala acknowledges the financial support of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Erik Jacobsen.

Additional information

Responsible Editor: Frans J.M Maathuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolf, V.I., Shabala, S., Andersen, M.N. et al. Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357, 117–129 (2012). https://doi.org/10.1007/s11104-012-1133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1133-7

Keywords

Navigation