Skip to main content

Origin of Genetic Variability and Improvement of Quinoa (Chenopodium quinoa Willd.)

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 10))

Abstract

Quinoa is a pseudocereal having a very balanced composition of carbohydrates, fat, and protein. Various studies based on inheritance, molecular cytology, DNA markers, and single locus variability have established it as an allotetraploid (2n = 4x = 36). It has been cultivated for 5 millennia in the Andes where it probably originated from its wild and weedy forms. Domestication process led to loss of many characters disadvantageous to farmers leading to narrowing of the genetic base. However, wide diversity based on plant color, seed color, types of branching and panicles, productivity, abiotic stress tolerance, and disease resistance still exists. This diversity is also reflected at the molecular level and is being used by the plant breeders worldwide to develop improved plant types with respect to uniformity, early maturity, seed yield, protein content, and reduced saponin content in the seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed NT, Singhal RS, Kulkarni PR, Pal M (1996a) Physicochemical and functional properties of Chenopodium quinoa starch. Carbohydr Polym 31:99–103

    Article  CAS  Google Scholar 

  • Ahamed NT, Singhal RS, Kulkarni PR, Kale DD, Pal M (1996b) Studies on Chenopodium quinoa and Amaranthus paniculatas starch as biodegradable fillers in LDPE films. Carbohydr Polym 31:157–160

    Article  CAS  Google Scholar 

  • Anabalon-Rodriguez L, Thomet-Isla M (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and highland accessions. J Plant Breed Crop Sci 1:210–216

    Google Scholar 

  • Aubrecht E, Biacs PA (2001) Characterization of buckwheat grain proteins and its products. Acta Aliment 28:261–268

    Google Scholar 

  • Bazile D, Olguin Manzano PA, Nunez L, Croce P, Alacron G, Lagos J, Parra F, Peredo P, Negrete Sepulveda J (2010) Differencacion territorial asociada a la quinua en el secano costero dela sexta region, Chile:consideraciones sobre las praticas y representaciones socials para un desarrollo sostenible. In: Anales de la Sociedad Chilena de Ciencias Geograficas, pp 103–109

    Google Scholar 

  • Bazile D, Fuentes F, Mujika A (2013) Historical perspectives and domestication. In: Bhargava A, Srivastava S (eds) Quinoa botany, production and uses. CAB International, Oxfordshire, pp 16–35

    Chapter  Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Ser B Biol Sci 334:309–345

    Article  CAS  Google Scholar 

  • Bertero HD, de la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multienvironment trials. Field Crops Res 89:299–318

    Article  Google Scholar 

  • Bhargava A, Srivastava S (2013) Quinoa botany, production and uses. CAB International, Oxfordshire

    Book  Google Scholar 

  • Bhargava A, Shukla S, Katiyar RS, Ohri D (2003) Selection parameters for genetic improvement in Chenopodium grain on sodic soil. J Appl Hortic 5:45–48

    Google Scholar 

  • Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol Plant 49:505–511

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006a) Chenopodium quinoa—an Indian perspective. Industrial Cropsand  Products 23:73–87

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006b) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Res Crop Evol 53:1309–1320

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007a) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium Willd.). Field Crops Res 101:104–116

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007b) Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia 60:245–250

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007c) Gynomonoecy in Chenopodium quinoa Willd. (Chenopodiaceae): variation in inflorescence and floral types in some accessions. Biologia 62:19–23

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007d) Evaluation of foliage yield and leaf quality traits in Chenopodium spp. in multiyear trials. Euphytica 153:99–213

    Google Scholar 

  • Bhargava A, Shukla S, Rajan S, Ohri D (2007e) Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genet Res Crop Evol 54:167–173

    Article  Google Scholar 

  • Brown DC, Cepeda-Cornejo V, Maughan PJ, Jellen EN (2014) Characterization of the Granule bound starch synthase I gene in Chenopodium. The Plant Genome doi:10.3835/plantgenome2014.09.0051

    Google Scholar 

  • Carlsson R (1980) Quantity and quality of leaf protein concentrates from Atriplex hortensis L. Chenopodium quinoa Willd. and Amaranthus caudatus L. grown in southern Sweden. Acta Agriculturae Scand 30:418–426

    Article  Google Scholar 

  • Catacora AG (1977) Determinacion de cariotipoen cinco lineas de quinua (Chenopodium quinoa Willd). Ingeniero Agronomo thesis, Universidad Nacionel Technica del Altiplano, Puno, Peru

    Google Scholar 

  • Chauhan GS, Eskin NAM, Tkachuk R (1992) Nutrients and antinutrients in quinoa seeds. Creal Chem 69:85–88

    CAS  Google Scholar 

  • Christensen SA, Pratt DB, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of biodiversity in the USDA and CIP-FAO international nusery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5:82–95

    Article  CAS  Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequence tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:539–447

    Google Scholar 

  • Coulter L, Lorenz K (1990) Quinoa-composition, nutritional value, food applications. LWT-Food Sci Technol 23:203–207

    CAS  Google Scholar 

  • Cusack D (1984) Quinoa: grain of the Incas. Ecologist 14:21–31

    Google Scholar 

  • Del Castillo C,Winkel T, Mahy G, Bizoux JP (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Res Crop Evol 54:897–905

    Google Scholar 

  • Dostalek J (1987) Influence of the mode of pollination on offsprings of some species of the genus Chenopodium. Preslia 59:263–269

    Google Scholar 

  • Drezewiecki J, Delgado-Licon E, Haruenkit R, Pawelzik E, Martin-Belloso O, Park YS (2003) Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. J Agric Food Chem 51:7798–7804

    Article  CAS  Google Scholar 

  • Eberhart SA, Russel WA (1966) Stability parameters for comparing varieties. Crop Sci 6(1):36–40

    Google Scholar 

  • Escuredo O, Inmaculada GMM, Moncada GW, Fischer S, Hierro JMH (2014) Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci (in press)

    Google Scholar 

  • Espinola G, Gandarillas H (1985) Study of correlated characters and their effects on quinoa yield. Bol Genetico 13:47–54

    Google Scholar 

  • Fairbanks D, Waldrigues A, Ruas CF, Maughan PJ, Robison LR, Adersen WR, Riede CR, Pauley CS, Caeteno LG, Arantes OM, Fungaro MHP, Vidotto MC, Jankevicius SE (1993) Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Bras Genet 16:11–22

    Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Fleming JE, Galway NW (1995) Quinoa (Chenopodium quinoa Willd.). In: Williams JT (ed) Cereals and Pseudocereals. Chapman and Hall, London, pp 2–83

    Google Scholar 

  • Fuentes F, Bhargava A (2011) Morphological analysis of quinoa germplasm grown under low land desert conditions. J Agron Crop Sci 197:124–137

    Article  Google Scholar 

  • Fuentes F, Martinez EA, Hinrichson PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplas using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    Article  CAS  Google Scholar 

  • Fuentes F, Bazile D, Bhargava A, Martinez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150:702–716

    Article  Google Scholar 

  • Galwey NW (1993) The potential of quinoa as a multipurpose crop for agricultural diversification: a review. Ind Crops Prod 1:101–106

    Article  Google Scholar 

  • Galwey NW (1995) Quinoa and relatives. In: Smartt J, Simmonds NW (eds) Quinoa and relatives. Longman Scientific and Technical, Essex, England

    Google Scholar 

  • Galwey NW, Leakey CLA, Price KR, Fenwick GR (1990) Chemical composition and nutritional characteristics of quinoa (Chenopodium quinoa Willd.). Food Sci Nutr 42F:245–261

    Google Scholar 

  • Gandarillas H (1969) Esterilidadgenetica y citoplasmica en la quinoa. Turrialba 19:429–430

    Google Scholar 

  • Gandarillas H (1979) Botanica. Quinua y kaniwa. Cultivos Andinos. In: Tapia ME (ed) Serie Libros y Materiales Educativos. Instituto Interamericano de Ciencias Agricolas, Bogota, Colombia, pp 20–44

    Google Scholar 

  • Gęsiński K (2000) Potential for Chenopodium quinoa Willd acclimatisation in Poland. Crop development of the cool and wet regions of Europe. European Communities, Belgium

    Google Scholar 

  • Giusti L (1970) El genero Chenopodium en Argentina 1: Numeros de cromosomas. Darwiniana 16:98–105

    Google Scholar 

  • Gorinstein S, Pawelzik E, Gelgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterization of pseudocereal and cereal proteins by protein and amino acid analysis. J Sci Food Agric 82:886–891

    Article  CAS  Google Scholar 

  • Haaber J (1991) Chenopodium quinoa Willd. As a green crop for the palleting industry-the effect of heat treatment on the palatability in green pallets made of quinoa. First European symposium on industrial crops and products, Maastricht, The Netherlands

    Google Scholar 

  • Heiser CB, Nelson DC (1974) On the origin of cultivated chenopods (Chenopodium). Genetica 78:503–505

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen SE (2014) Deficit irrigation and organic compost improve growth and yield of quinoa and pea. J Agron Crop Sci 200:390–398

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2004) Genetic improvement of under-utilized and neglected crops in low income food deficit countries through irradiation and related techniques. In: Proceedings of a final research coordination meeting organized by the joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Pretoria, South Africa, May 19–23, 2003

    Google Scholar 

  • Iliadis C, Karyotis T, Mitsimponas T (1997) Research on quinoa (Chenopodium quinoa) and amaranth (Amaranthus caudatus) in Greece. In: Ortiz R, Stolen O (eds) Crop development for the cool and wet regions of Europe. Spelt and Quinoa COST 814, pp 85–91

    Google Scholar 

  • Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to northern European agriculture: studies on developmental pattern. Euphytica 96:41–48

    Article  Google Scholar 

  • Jacobsen SE (1998) Developmental stability of quinoa under European conditions. Ind Crops Prod 7:169–174

    Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Article  Google Scholar 

  • Jacobsen SE, Stolen O (1993) Quinoa: morphology, phenology and prospects for its production as a new crop in Europe. Eur J Agron 2:19–29

    Article  Google Scholar 

  • Jacobsen SE, Jorgensen I, Stolen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122:47–52

    Article  Google Scholar 

  • Jacobsen SE, Hill J, Stolen O (1996) stability of quantitative traits in quinoa (Chenopodium quinoa Willd.). Theor Appl Genet 93:110–116

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Article  Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51

    Google Scholar 

  • Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, legume crops and forages. Springer, Berlin, pp 35–61

    Chapter  Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae, Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  • Kawatani K, Ohno T (1950) Chromosome numbers of genus Chenopodium, I. Japan J Genet 25:177–180

    Article  Google Scholar 

  • Kawatani K, Ohno T (1956) Chromosome numbers of genus Chenopodium, II. Japan J Genet 31:15–17

    Article  Google Scholar 

  • Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Botanicorum Pol 70:85–90

    CAS  Google Scholar 

  • Kolano B, Gardunia BW, Michalska M, Bonifacio D, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynska J (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome Genome 54:710–717

    Article  CAS  PubMed  Google Scholar 

  • Kolano B, Siwinska D, Pando LG, Szymanowska-Pulka J, Maluszynska J (2012) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255

    Article  CAS  Google Scholar 

  • Konishi Y, Hirano S, Tsuboi H, Wada C (2004) Distribution of minerals in quinoa (Chenopodium quinoa Willd) seeds. Biosci Biotech Biochem 68:231–234

    Article  CAS  Google Scholar 

  • Koziol M (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compos Anal 5:35–68

    Article  CAS  Google Scholar 

  • Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault JP, Lafont R (2011) Ecdysteroids from Chenopodium quinoa Willd., and ancient Andean crop of high nutritional value. Food Chem 125:1226–1234

    Article  CAS  Google Scholar 

  • Lescano RJL (1980) Avances en la genetic de quinoa. In: Primera Reunion de Genetica y Fitomejoramiento de la quinoa. Universidad Nacional Tecnica del Altiplano, Instituto Boliviano de Tecnologia Agropecuaria, Instituto Interamericano de Ciencias Agricolas, Centro Internacional de Investigaciones para el Desarrollo, Puno,Peru, pp B1–B2

    Google Scholar 

  • Limburg H, Mastebroek HD (1997) Breeding high yielding lines of Chenopodium quinoa Willd. With saponin free seed. In: Stolen O, Bruhn K, Pithan K, Hill J (eds) Small grain Cereals and Pseudocereals. In: Proceedings of the COST 814 workshop, 22–24 Feb 1996, Copenhagen, Denmark, pp 103–114

    Google Scholar 

  • Lindeboom N (2005) Studies on the characterization, biosynthesis and isolation of starch and protein from quinoa (Chenopodium quinoa Willd.), University of Saskatchewan Degree of Doctor

    Google Scholar 

  • Lindhout P, Danial D (2006) Participatory genomics in quinoa. Tailor Biotechnol 2:31–50

    Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Mastebroek HD, Limburg H (1997) Breedng for harvest security in Chenopodium quinoa. In: Stolen O, Bruhn K, Pithan K, Hill J (eds) Small grain cereals and pseudocereals. In: Proceedings of the COST 814 Workshop. 22–24 February 1996, Copenhagen, Denmark, pp 79–86

    Google Scholar 

  • Mastebroek HD, van Soest LJM (1994) Gierstmelde blijkt multi-purpose-gewas (Chenopodium quinoa proves multipurpose crop). Prophyta 1:15–17

    Google Scholar 

  • Mastebroek HD, van Loo EN, Dolstra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125:427–432

    Article  CAS  Google Scholar 

  • Maughan PJ, Bonofacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) base on AFLP, RAPD and SSR markers. Theor Appl Genet 109:118–1195

    Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonofacio A, Rojas J, Coleman CE Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal DNAs in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonofacio A (2009) Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Smith S, Rojas-Beltran J, Elzinga D, Raney J, Jellen E, Bonofacio A, Udall J, Fairbanks D (2012) Single nucleotide polymorphisms identifications, characterization and linkage mapping in Chenopodium quinoa. Plant Genome 5:1–7

    Article  CAS  Google Scholar 

  • Medina W, Janiak A, Szarejko I, Mujika A, Jacobsen SE (2004) Analisis de relaciones geneticas entre variedads de quinua (Chenopodium quinoa Willd.) utilizando la tecnica de AFLP (amplified fragment length polymorphism). In: Libro de Resumenes XI Congresso Internacional de cultivos andinos. Cochabamba, Bolivia

    Google Scholar 

  • Mujica A (2004) La Quinoa Indigena, caracteristicas e historia. In: Sepulveda J, Thomat MI, Palazuelos F, Mujica A (eds) La kinwa mapuche, Recupracion de un cultivo para la Alimentacion. Fundacion para la Innovacion Agraria, Ministerio de Agricultura Temuco, Chile, pp 22–42, Crop relatives: genomic and breeding resources, legume crops and forages. Springer, Heidelberg, pp 35–61

    Google Scholar 

  • Mujica A, Jacobsen SE, Ezquierdo J, Marathee JP (2001) Resultados de la Prueba Americana y Europes de la Quinua. CIP, FAO, UNA-Puno, p 51

    Google Scholar 

  • Mujica A, Chura E, Ruiz E, Martinez R (2010a) Mecanismos de resistencia a sequia de la quina (Chenopodium quinoa Willd.). In: Proceedings Primer Congresso Peruano de Majoramiento Genetico de Plantas y Biotecnologia Agricola, 17–19 May. UNALM, EPG, Lima, Peru, pp 111–114

    Google Scholar 

  • Mujica A, Chura E, Ruiz E, Rossel J, Pocco M (2010b) Mecanismos de resitencia a sales y seleccion de variedades de quinua (Chenopodium quinoa Willd.) resistates a salinidad. In: Anales XII Congraso Nacional de las Ciencias del Suelo y V Congresso Internacional de las Ciencias del Suelo, Arequipa, Peru, 11–15 Oct 2010, pp 187–189

    Google Scholar 

  • Munir H, Sehar S, Basra SMA, Jacobsen HJ, Rauf S (2012) Growing quinoa in Pakistan as a potential alternative for food security. In: Resilience of agricultural systems against crises, 19–21 Sept 2012, Göttingen-Kassel/Witzenhausen, Germany

    Google Scholar 

  • Nelson DC (1968) Taxonomy and origins of Chenopodium quinoa and Chenopodium nuttalliae. Ph.D. thesis, University of Indiana, Bloomington, Indiana

    Google Scholar 

  • Nisimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. Seeds Food Chem 106:760–766

    Article  CAS  Google Scholar 

  • Nunez Carrasco L, Bazile D, Chia E, Hocde H, Negrete Sapulveda J, Martinez EA (2010) Representaciones socials acerca de la conservacion de la biodiversidad en el caso de peroductores tradicionales de Chenopodium quinoa Willd de secano costero en las regionses de O’Higgins y el Maule. Anales de la Sociedad Chilena de Ciencias Geograficas, pp 181–187

    Google Scholar 

  • Ochoa J, Peralta E (1988) Evaluacion preliminary morfologica y agronomica de 153 entradas de quinua en Santa Catalina. Pichincha. Actas del VI Congreso Internacional sobre Cultivos Andinos. Quito, Ecuador, pp 137–142

    Google Scholar 

  • Oritz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    Article  Google Scholar 

  • Oritz R, madsen S, Ruiz-Tapia EN, Jacobsen SE, Mujica-Sanchez A, Christiansen JL, Stolen O (1999) Validating a core collection of Peruvian quinoa germplasm. Genet Res Crop Evol 46:285–290

    Google Scholar 

  • Palomino GH, Segura MD, Bye RB, Mercado RP (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Soutwestern Nat 35:351–353

    Article  Google Scholar 

  • Palomino GH, Hernandez LT, Torres EC (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp nuttalliae. Euphytica 164:221–230

    Article  CAS  Google Scholar 

  • Pratt C (2003) AFLP analysis of genetic diversity in the USDA Chenopodium quinoa collection. M.S. Thesis, Brigham Young University, Provo, UT, USA

    Google Scholar 

  • Rana TS, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci 98:840–846

    CAS  Google Scholar 

  • Rea J (1969) Biologia floral de la quinoa (Chenopodium quinoa). Turrialba 19:91–96

    Google Scholar 

  • Rep-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. M.Sc. thesis, Brigham Young University, Provo, Utah

    Google Scholar 

  • Risi J, Galway NW (1984) The chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Risi J, Galwey NW (1989) Chenopodium grains of the Andes: a crop for the temperate latitudes. In: Wickens GE, Haq N, Day P (eds) New crops for food and industry. Chapman and Hall, New York

    Google Scholar 

  • Risi J, Galwey NW (1991) Genotype x environment interaction in the Andean grain crop quinoa (Chenopodium quinoa) in temperate environments. Plant Breed 107:141–147

    Article  Google Scholar 

  • Rodriguez LA, Isla MT (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and highland accessions. J Plant Breed Crop Sci 1:210–216

    CAS  Google Scholar 

  • Rojas W (1998) Análisis de la diversidad genética del germoplasma de quinua (Chenopodium quinoa Willd.) de Bolivia, mediante métodos multivariados. Tesis M.Sc., Universidad Austral de Chile, Facultad de Ciencias Agrarias. Valdivia—Chile, 209 p

    Google Scholar 

  • Rojas W (2003) Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Rev Int 19:9–23

    Article  Google Scholar 

  • Ruales J, Nair BM (1992) Nutritional quality of protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Hum Nutr 42:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Anderson WR (1999) Genetic relationships among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibali AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four low land genotypes of quinoa (Chenopodium quinoa Willd) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Shafii B, Price WJ (1998) Analysis of genotype-by-environment interaction using the additive main effects and multiplicative interaction model and stability estimates. J Agric Biol Environ Stat 3:335–345

    Google Scholar 

  • Schlick G, Bubenheim DL (1996) Quinoa- candidate crop for NASA’s controlled ecological life support systems. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington

    Google Scholar 

  • Shams A (2011) Combat degradation in rain fed areas by introducing new drought tolerant crops in Egypt. Int J Water Res Arid Environ 1:318–325

    Google Scholar 

  • Shukla GK (1972) Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29:237–245

    Article  CAS  PubMed  Google Scholar 

  • Silvestri V, Gil F (2000) Alogamia en quinoa. Tasa en Mendoza (Argrntina). Revisita de la facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, pp 71–76

    Google Scholar 

  • Simmonds NW (1971) The breeding system of quinoa. I. Male sterility. Heredity 27:73–82

    Google Scholar 

  • Spehar CR, Santos RLB (2005) Agronomic performance of quinoa selected in the Brazilian Savannah. Pesquiza Agropecuaria Bras 40:609–612

    Article  Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumughanathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Stikic R, Glamoclija D, Demin M, Vucelic-Radivic B, Jovanovic Z, Milokovic-Opsenica D et al (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138

    Article  CAS  Google Scholar 

  • Storchova H, Drabesova J, Chab D, Kolar J, Jellen EN (2015) The introns in Flowering locus T-like (FTL) genes are useful markers for tracing paternity in tetraploid Chenopodium quinoa. Genet Res Crop Evol 62:913–925

    Google Scholar 

  • Suzuka O (1950) Chromosome numbers in pharmaceutical plants I. Seikon Ziho (Rept Kihara Inst Biol Res) 4:57–58

    Google Scholar 

  • Taboada C, Mamani A, Raes D, Mathijs Erik, García M, Geerts S, Gilles J (2011) Farmers’ willingness to adopt irrigation for quinoa in communities of the Central Altiplano of Bolivia. Revista Latinoamericana de Desarrollo Económico 16:7–28

    Google Scholar 

  • Tai GCC (1971) Genotypic stability analysis and its application to potato regional trials. Crop Sci 11:184–190

    Google Scholar 

  • Tanaka R, Tanaka A (1980) Karyomorphological studied on halophytic plants. I. Some taxa of Chenopodium. Caryologia 45:257–269

    Google Scholar 

  • Tang H, Watanabe K, Mitsunaga T (2002) Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydr Polym 49:13–22

    Article  CAS  Google Scholar 

  • Tapia ME (1979) Historia y distribucion geographica. Quinoa y kaniwa. Cultivos Andinos. In: Tapia ME (ed) Serie Libros y Materiales Educativos. Instituto Interamericano de Ciencias Agricolas, Bogota, Colombia, pp 11–15

    Google Scholar 

  • Tapia M (1982) The environment, crops and agricultural systems in the Andes and Southern Peru, IICA

    Google Scholar 

  • Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujika A, Oritz R, Otazu V, Rea J, Salas B, Zanabria E (1979) La quinoa y la kaniwa. Centro Internacional de Investigaciones para el Desarollo, Instituto Internacional de Ciencias Agricolas, Bogota, Columbia

    Google Scholar 

  • Tari T, Annapure U, Singhal R, Kulkarni P (2003) Starch-based spherical aggregates: screening of small granule sized starches for entrapment of a model flavouring compound, vanillin. Carbohydr Polym 53:45–51

    Article  CAS  Google Scholar 

  • Uotila P (1973) Chromosome counts on Chenopodium L. from SE Europe and SW Asia. Ann Botanici Fenn 10:337–340

    Google Scholar 

  • Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez E (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.) an ancient Andean grain: a review. J Sci Food Agric 90:2541–2726

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tsuchiya T, Wilson HD (1993) Chromosome studies in several species of Chenopodium from North and South America. J Genet Breed 47:163–170

    Google Scholar 

  • Ward SM (1998) A new source of restorable cytoplasmic male sterility in quinoa. Euphytica 101:157–163

    Article  Google Scholar 

  • Ward SM (2000) Allotetraploid segregation for single gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16

    Article  CAS  Google Scholar 

  • Ward SM, Johnson DL (1993) Cytoplasmic male sterility in quinoa. Euphytica 66:217–223

    Article  Google Scholar 

  • Ward SM, Johnson DL (1994) A recessive gene determining male sterility in quinoa. J Hered 85:231–233

    Google Scholar 

  • Wilson HD (1976) Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem Genet 14:913–919

    Article  CAS  PubMed  Google Scholar 

  • Wilson HD (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263

    Google Scholar 

  • Wilson HD (1988) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson HD (1990) Quinua and relatives (Chenopodium sect. Chenopodium subsect. Cellulata). Econ Bot 44:92–110

    Google Scholar 

  • Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of ‘huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Amer J Bot 66:198–206

    Article  Google Scholar 

  • Wilson HD, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86:642–648

    Article  CAS  PubMed  Google Scholar 

  • Wright KH, Pike OA, Fairbanks DJ, Huber SC (2002) Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. Food Chem Toxicol 67:1383–1385

    CAS  Google Scholar 

  • Yamashita A, Isobe K, Ishii R (2007) Agronomic studies on quinoa cultivation in Japan. I. Determination of the proper seeding time in the southern Kanto district for good performance of the grain yield. Japan J Crop Sci 76:59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Ohri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhargava, A., Ohri, D. (2016). Origin of Genetic Variability and Improvement of Quinoa (Chenopodium quinoa Willd.). In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_8

Download citation

Publish with us

Policies and ethics