Skip to main content

The Role of Microdamage in Bone Mechanics and Osteoporotic Fractures

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders
  • 820 Accesses

Abstract

Microdamage is an established component of bone quality. It has several important roles in bone physiology, including stimulating bone remodeling and influencing bone mechanical properties. Although microdamage has effects (both positive and negative) on mechanical properties, the independent role of damage accumulation in living bone is challenging to tease out. Modification of remodeling rate, most commonly through pharmacological drug treatments, affects levels of microdamage but how this affects common and atypical fractures remains unclear.

The present invited review was completed and submitted to the publisher on 09-Feb-20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frost H. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull. 1960;8:25–35.

    Google Scholar 

  2. Burr DB, Hooser M. Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone. 1995;17:431–3.

    Article  CAS  PubMed  Google Scholar 

  3. Burr DB, Stafford T. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res. 1990;260.

    Google Scholar 

  4. Carter DR, Hayes WC. Compact bone fatigue damage-I. Residual strength and stiffness. J Biomech. 1977;10:325–37.

    Article  CAS  PubMed  Google Scholar 

  5. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  CAS  PubMed  Google Scholar 

  6. Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30:2–4.

    Article  CAS  PubMed  Google Scholar 

  7. Burr DB. Remodeling and the repair of fatigue damage. Calcif Tissue Int. 1993. https://doi.org/10.1007/BF01673407

  8. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.

    Article  CAS  PubMed  Google Scholar 

  9. Green JO, Wang J, Diab T, Vidakovic B, Guldberg RE. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44:2659–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burr D. Microdamage and bone strength. Osteoporos Int. 2003;14(Suppl 5):67–72.

    Article  Google Scholar 

  11. Fyhrie DP, Christiansen BA. Bone material properties and skeletal fragility. Calcif Tissue Int. 2015;97:213–28.

    Article  CAS  PubMed  Google Scholar 

  12. Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97:308–26.

    Article  CAS  PubMed  Google Scholar 

  13. Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97:201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ, Giehl M, Gowin W. Detecting microdamage in bone. J Anat. 2003;203:161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bigley RF, Singh M, Hernandez CJ, Kazakia GJ, Martin RB, Keaveny TM. Validity of serial milling-based imaging system for microdamage quantification. Bone. 2008;42:212–5.

    Article  CAS  PubMed  Google Scholar 

  16. Karim L, Vashishth D. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J Orthop Res. 2011;29:1739–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fazzalari NL, Forwood MR, Manthey BA, Smith K, Kolesik P. Three-dimensional confocal images of microdamage in cancellous bone. Bone. 1998;23:373–8.

    Article  CAS  PubMed  Google Scholar 

  18. Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB. Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res. 1998;16:322–9.

    Article  CAS  PubMed  Google Scholar 

  19. Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007. https://doi.org/10.1016/j.bone.2006.09.027

  20. Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP. In vivo diffuse damage in human vertebral trabecular bone. Bone. 2000;26:147–52.

    Article  CAS  PubMed  Google Scholar 

  21. Martin RB. Targeted bone remodeling involves BMU steering as well as activation. Bone. 2007;40:1574–80.

    Article  CAS  PubMed  Google Scholar 

  22. Seref-ferlengez Z, Kennedy OD, Schaffler MB. Diffuse microdamage induced in cortical bone in vivo decreases with time in the absence of bone remodeling. J Biomech. 2012;60445.

    Google Scholar 

  23. Burr DB. The complex relationship between bone remodeling and the physical and material properties of bone. Osteoporos Int. 2015;26:845–7.

    Article  CAS  PubMed  Google Scholar 

  24. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2:164–8.

    Article  CAS  PubMed  Google Scholar 

  25. Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. 2005. https://doi.org/10.1016/j.jbiomech.2004.07.010

  26. Burr DB. Why bones bend but don’t break. J Musculoskelet Neuronal Interact. 2011;11:270–85.

    CAS  PubMed  Google Scholar 

  27. Allen MR, Burr DB. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone. 2011;49:56–65.

    Article  CAS  PubMed  Google Scholar 

  28. Allen MR, Burr DB. Skeletal microdamage: less about biomechanics and more about remodeling. Clin Rev Bone Miner Metab. 2008;6:24–30.

    Article  Google Scholar 

  29. Järvinen TLN, Sievänen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336:124–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roberts WE, Roberts JA, Epker BN, Burr DB, Hartsfield JK. Remodeling of mineralized tissues, part I: the frost legacy. Semin Orthod. 2006;12:216–37.

    Article  Google Scholar 

  31. Russell RGG. Bisphosphonates: the first 40 years. Bone. 2011. https://doi.org/10.1016/j.bone.2011.04.022

  32. Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009. https://doi.org/10.1056/NEJMoa0809493

  33. Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011. https://doi.org/10.1016/j.bone.2010.11.020

  34. Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.

    Article  CAS  PubMed  Google Scholar 

  35. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47:766–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998. https://doi.org/10.1016/S8756-3282(98)00104-5

  37. Li J, Mashiba T, Burr DB. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int. 2001;69:281–6.

    Article  CAS  PubMed  Google Scholar 

  38. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.

    Article  CAS  PubMed  Google Scholar 

  39. Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–9.

    Article  CAS  PubMed  Google Scholar 

  40. Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res. 2007;22:1759–65.

    Article  CAS  PubMed  Google Scholar 

  41. Allen MR, Erickson AM, Wang X, Burr DB, Martin RB, Hazelwood SJ. Morphological assessment of basic multicellular unit resorption parameters in dogs shows additional mechanisms of bisphosphonate effects on bone. Calcif Tissue Int. 2010;86:67–71.

    Article  CAS  PubMed  Google Scholar 

  42. Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20:887–94.

    Article  CAS  PubMed  Google Scholar 

  43. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 2008;19:329–37.

    Article  CAS  PubMed  Google Scholar 

  44. Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int. 2008;19:1251–65.

    Article  CAS  PubMed  Google Scholar 

  45. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.

    Article  CAS  PubMed  Google Scholar 

  46. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–20.

    Article  CAS  PubMed  Google Scholar 

  47. Mashiba T, Turner CH, Hirano T, Forwood MR, Jacob DS, Johnston CC, Burr DB. Effects of high-dose etidronate treatment on microdamage accumulation and biomechanical properties in beagle bone before occurrence of spontaneous fractures. Bone. 2001;29:271–8.

    Article  CAS  PubMed  Google Scholar 

  48. Allen MR, Reinwald S, Burr DB. Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int. 2008;82:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allen MR, Burr DB. Changes in vertebral strength-density and energy absorption-density relationships following bisphosphonate treatment in beagle dogs. Osteoporos Int. 2008;19:95–9.

    Article  CAS  PubMed  Google Scholar 

  50. Allen MR, Burr DB. Mineralization, microdamage, and matrix: how bisphosphonates influence material properties of bone. BoneKEy-Osteovision. 2007;4:49–60.

    Article  Google Scholar 

  51. Burr DB, Liu Z, Allen MR. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs. Bone. 2015;71:58–62.

    Article  CAS  PubMed  Google Scholar 

  52. Stepan JJ, Burr DB, Pavo I, et al. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone. 2007;41:378–85.

    Article  PubMed  Google Scholar 

  53. Chapurlat RD, Arlot M, Burt-Pichat B, Chavassieux P, Roux JP, Portero-Muzy N, Delmas PD. Microcrack frequency and bone remodeling in postmenopausal osteoporotic women: a bone biopsy study (Journal of Bone and Mineral Research (2007) 22, (1502-1509)). J Bone Miner Res. 2008;23:1153.

    Google Scholar 

  54. Burr DB, Allen MR. Low bone turnover and microdamage? How and where to assess it? J Bone Miner Res. 2008;23:1150–1.

    Article  PubMed  Google Scholar 

  55. Bruce Martin R, Burr DB. A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage. J Biomech. 1982;15:137–9.

    Article  Google Scholar 

  56. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R. Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 2001;28:150–9.

    Article  CAS  PubMed  Google Scholar 

  57. Allen MR, Burr DB. Parathyroid hormone and bone biomechanics. Clin Rev Bone Miner Metab. 2006;4:259–68.

    Article  CAS  Google Scholar 

  58. Yoshitake S, Mashiba T, Saito M, Fujihara R, Iwata K, Takao-Kawabata R, Yamamoto T. Once-weekly teriparatide treatment prevents microdamage accumulation in the lumbar vertebral trabecular bone of ovariectomized cynomolgus monkeys. Calcif Tissue Int. 2019;104:402–10.

    Article  CAS  PubMed  Google Scholar 

  59. Dobnig H, Stepan JJ, Burr DB, Li J, Michalská D, Sipos A, Petto H, Fahrleitner-Pammer A, Pavo I. Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res. 2009;24:1998–2006.

    Article  CAS  PubMed  Google Scholar 

  60. Miller PD, McCarthy EF. Bisphosphonate-associated atypical sub-trochanteric femur fractures: paired bone biopsy quantitative histomorphometry before and after teriparatide administration. Semin Arthritis Rheum. 2015;44:477–82.

    Article  CAS  PubMed  Google Scholar 

  61. Dempster DW, Zhou H, Recker RR, et al. Differential effects of teriparatide and denosumab on intact PTH and bone formation indices: AVA osteoporosis study. J Clin Endocrinol Metab. 2016;101:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dempster DW, Zhou H, Recker RR, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res. 2018;33:298–306.

    Article  CAS  PubMed  Google Scholar 

  63. Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JAD, Nieves JW, Dempster DW. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res. 2006;21:366–73.

    Article  CAS  PubMed  Google Scholar 

  64. Ma YL, Zeng QQ, Chiang AY, et al. Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone. 2014;59:139–47.

    Article  CAS  PubMed  Google Scholar 

  65. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CYC. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–301.

    Article  CAS  PubMed  Google Scholar 

  66. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2010;25:2267–94.

    Article  PubMed  Google Scholar 

  67. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29:1–23.

    Article  PubMed  Google Scholar 

  68. Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical femur fractures: review of epidemiology, relationship to bisphosphonates, prevention, and clinical management. Endocr Rev. 2018;40:333–68.

    Article  Google Scholar 

  69. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55:495–500.

    Article  CAS  PubMed  Google Scholar 

  70. Milgrom C, Burr DB, Finestone AS, Voloshin A. Understanding the etiology of the posteromedial tibial stress fracture. Bone. 2015;78:11–4.

    Article  PubMed  Google Scholar 

  71. Haider IT, Schneider PS, Edwards WB. The role of lower-limb geometry in the pathophysiology of atypical femoral fracture. Curr Osteoporos Rep. 2019;17:281–90.

    Article  PubMed  Google Scholar 

  72. Iwata K, Mashiba T, Hitora T, Yamagami Y, Yamamoto T. A large amount of microdamages in the cortical bone around fracture site in a patient of atypical femoral fracture after long-term bisphosphonate therapy. Bone. 2014;64:183–6.

    Article  PubMed  Google Scholar 

  73. Iwata K, Mashiba T, Mori S, Yamamoto T. Accumulation of microdamage at complete and incomplete fracture sites in a patient with bilateral atypical femoral fractures on glucocorticoid and bisphosphonate therapy. J Bone Miner Metab. 2019;37:206–11.

    Article  PubMed  Google Scholar 

  74. Schilcher J, Sandberg O, Isaksson H, Aspenberg P. Histology of 8 atypical femoral fractures. Acta Orthop. 2014;85:280–6.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang HY, Weng HL, Li M, Zhang J. Different surgical outcomes in a patient with bilateral atypical femoral fracture related to bisphosphonate use with or without teriparatide treatment. Osteoporos Int. 2019;30:2349–54.

    Article  CAS  PubMed  Google Scholar 

  76. Chiang CY, Zebaze RMD, Ghasem-Zadeh A, Iuliano-Burns S, Hardidge A, Seeman E. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone. 2013;52:360–5.

    Article  CAS  PubMed  Google Scholar 

  77. Yeh WL, Su CY, Chang CW, Chen CH, Fu TS, Chen LH, Lin TY. Surgical outcome of atypical subtrochanteric and femoral fracture related to bisphosphonates use in osteoporotic patients with or without teriparatide treatment. BMC Musculoskelet Disord. 2017;18:4–10.

    Article  Google Scholar 

  78. Greenspan SL, Vujevich K, Britton C, Herradura A, Gruen G, Tarkin I, Siska P, Hamlin B, Perera S. Teriparatide for treatment of patients with bisphosphonate-associated atypical fracture of the femur. Osteoporos Int. 2018;29:501–6.

    Article  CAS  PubMed  Google Scholar 

  79. Watts NB, Aggers D, McCarthy EF, Savage T, Martinez S, Patterson R, Carrithers E, Miller PD. Responses to treatment with teriparatide in patients with atypical femur fractures previously treated with bisphosphonates. J Bone Miner Res. 2017;32:1027–33.

    Article  CAS  PubMed  Google Scholar 

  80. Miyakoshi N, Aizawa T, Sasaki S, Ando S, Maekawa S, Aonuma H, Tsuchie H, Sasaki H, Kasukawa Y, Shimada Y. Healing of bisphosphonate-associated atypical femoral fractures in patients with osteoporosis: a comparison between treatment with and without teriparatide. J Bone Miner Metab. 2015;33:553–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tsuchie H, Miyakoshi N, Iba K, et al. The effects of teriparatide on acceleration of bone healing following atypical femoral fracture: comparison between daily and weekly administration. Osteoporos Int. 2018;29:2659–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allen, M.R. (2022). The Role of Microdamage in Bone Mechanics and Osteoporotic Fractures. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics