Skip to main content

Bone Biomechanics and the Determinants of Skeletal Fragility

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 3072 Accesses

Abstract

Fractures are among the most dramatic and devastating sequelae of aging of the human skeleton. In the USA alone, there are over 1.5 million fractures each year, including 280,000 hip fractures and 500,000 vertebral fractures. Of greater importance, however, is the fact that based on current demographic trends predicting a “graying” of the population worldwide, the number of fractures is projected to double or triple in the next 30–50 years. Whereas low BMD is among the strongest risk factors for fracture, a number of clinical studies have demonstrated the limitations of BMD measurements in assessing fracture risk and monitoring the response to therapy. These observations have brought renewed attention to the broader array of factors that influence fracture risk, including those that are directly related to skeletal fragility as well as those related to skeletal loading. This chapter reviews the etiology of age-related fractures from a biomechanics viewpoint, by introducing a standard engineering concept used to evaluate structural failures and considering the various components that influence whole bone strength, with discussion of how key dietary factors may influence the determinants of bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Health and Human Services. Bone health and osteoporosis: a report of the surgeon general. Rockville, MD: U.S. Department of Health and Human Services, Office of the Surgeon General; 2004.

    Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Google Scholar 

  3. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19(6):897–911.

    PubMed  Google Scholar 

  4. Bouxsein M. Biomechanics of age-related fractures. In: Marcus R, Feldman D, Nelson D, Rosen C, editors. Osteoporosis, vol. I. 3rd ed. San Diego, CA: Elsevier Academic Press; 2007. p. 601–16.

    Google Scholar 

  5. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31(2):125–33.

    CAS  PubMed  Google Scholar 

  6. Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc. 1993;41(11):1226–34.

    CAS  PubMed  Google Scholar 

  7. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA. 1994;271(2):128–33.

    CAS  PubMed  Google Scholar 

  8. Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporos Int. 2012;23(2):513–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA. Humeral hypertrophy in response to exercise. J Bone Joint Surg. 1977;59-A:204–8.

    Google Scholar 

  10. Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, Goldstein SA. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J Clin Invest. 1993;92(4):1697–705.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53.

    PubMed  Google Scholar 

  12. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194:1174–6.

    CAS  PubMed  Google Scholar 

  13. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg. 1977;59-A(7):954–62.

    Google Scholar 

  14. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech. 1988;21(2):155–68.

    CAS  PubMed  Google Scholar 

  15. Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307–33.

    CAS  PubMed  Google Scholar 

  16. Currey J. Effects of porosity and mineral content on the Young’s modulus of bone. Eur Soc Biomech. 1986;5:104.

    Google Scholar 

  17. Currey J. Physical characteristics affecting the tensile failure properties of compact bone. J Biomech. 1990;23:837–44.

    CAS  PubMed  Google Scholar 

  18. Schaffler M, Burr D. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21:13–6.

    CAS  PubMed  Google Scholar 

  19. McCalden R, McGeough J, Barker M, Court-Brown C. Age-related changes in the tensile properties of cortical bone. J Bone Joint Surg. 1993;75-A:1193–205.

    Google Scholar 

  20. Anderson DE, Bruno AG, Bouxsein ML. Biomechanics of age-related fractures. In: Marcus R, Feldman D, Nelson D, Dempster D, editors. Osteoporosis. 4th ed. San Diego, CA: Elsevier Academic Press; 2013. p. 497–516.

    Google Scholar 

  21. Karim L, Hussein A, Morgan EF, Bouxsein ML. Bone biomechanics. In: Marcus R, Feldman D, Nelson D, Dempster D, editors. Osteoporosis. 4th ed. San Diego, CA: Elsevier Academic Press; 2013. p. 431–52.

    Google Scholar 

  22. Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4(2):49–56.

    PubMed  Google Scholar 

  23. Bouxsein ML, Coan BS, Lee SC. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone. 1999;25(1):49–54.

    CAS  PubMed  Google Scholar 

  24. Lochmuller EM, Groll O, Kuhn V, Eckstein F. Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone. 2002;30(1):207–16.

    CAS  PubMed  Google Scholar 

  25. Lochmuller EM, Burklein D, Kuhn V, Glaser C, Muller R, Gluer CC, Eckstein F. Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone. 2002;31(1):77–84.

    PubMed  Google Scholar 

  26. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F. Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res. 2002;17(9):1629–38.

    PubMed  Google Scholar 

  27. Muller ME, Webber CE, Bouxsein ML. Predicting the failure load of the distal radius. Osteoporos Int. 2003;14(4):345–52.

    PubMed  Google Scholar 

  28. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16(7):1337–42.

    CAS  PubMed  Google Scholar 

  29. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.

    PubMed  Google Scholar 

  30. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men—the MINOS study. Bone. 2006;38(4):595–602.

    PubMed  Google Scholar 

  31. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology. 1994;190(3):678–82.

    CAS  PubMed  Google Scholar 

  32. Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE. Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest. 1995;95(5):2332–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16(12):2276–83.

    CAS  PubMed  Google Scholar 

  34. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res. 2008;23(8):1326–33.

    PubMed Central  PubMed  Google Scholar 

  35. Smith R, Walker R. Femoral expansion in aging women: implications for osteoporosis and fractures. Science. 1964;145:156–7.

    PubMed  Google Scholar 

  36. Ruff C, Hayes W. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science. 1982;217:945–7.

    CAS  PubMed  Google Scholar 

  37. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841–50.

    PubMed  Google Scholar 

  38. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res. 2006;21(12):1856–63.

    PubMed  Google Scholar 

  39. Ruff C, Hayes W. Sex differences in age-related remodeling of the femur and tibia. J Orthop Res. 1988;6:886–96.

    CAS  PubMed  Google Scholar 

  40. Beck TJ, Ruff CB, Bissessur K. Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int. 1993;53 Suppl 1:S41–6.

    PubMed  Google Scholar 

  41. Seeman E. From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res. 1997;12(4):509–21.

    CAS  PubMed  Google Scholar 

  42. Riggs BL, Melton III LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

    PubMed  Google Scholar 

  43. Samelson EJ, Christiansen BA, Demissie S, Broe KE, Louie-Gao Q, Cupples LA, Roberts BJ, Manoharam R, D’Agostino J, Lang T, Kiel DP, Bouxsein ML. QCT measures of bone strength at the thoracic and lumbar spine: the Framingham Study. J Bone Miner Res. 2012;27(3):654–63.

    PubMed Central  PubMed  Google Scholar 

  44. Gibson L. The mechanical behaviour of cancellous bone. J Biomech. 1985;18:317–28.

    CAS  PubMed  Google Scholar 

  45. Parkinson IH, Badiei A, Stauber M, Codrington J, Muller R, Fazzalari NL. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int. 2012;23(7):1957–65.

    CAS  PubMed  Google Scholar 

  46. Liu XS, Zhang XH, Guo XE. Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone. 2009;45(2):158–63.

    PubMed Central  PubMed  Google Scholar 

  47. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27(2):263–72.

    PubMed Central  PubMed  Google Scholar 

  48. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.

    CAS  PubMed  Google Scholar 

  49. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22(5):445–54.

    CAS  PubMed  Google Scholar 

  50. Genant HK, Gordon C, Jiang Y, Link TM, Hans D, Majumdar S, Lang TF. Advanced imaging of the macrostructure and microstructure of bone. Horm Res. 2000;54 Suppl 1:24–30.

    CAS  PubMed  Google Scholar 

  51. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    CAS  PubMed  Google Scholar 

  52. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62.

    PubMed  Google Scholar 

  53. Putman MS, Yu EW, Lee H, Neer RM, Schindler E, Taylor AP, Cheston E, Bouxsein ML, Finkelstein JS. Differences in skeletal microarchitecture and strength in African-American and white women. J Bone Miner Res. 2013;28(10):2177–85.

    PubMed Central  PubMed  Google Scholar 

  54. Rozental TD, Deschamps LN, Taylor A, Earp B, Zurakowski D, Day CS, Bouxsein ML. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J Bone Joint Surg Am. 2013;95(7):633–42.

    PubMed Central  PubMed  Google Scholar 

  55. Goulet R, Goldstein S, Ciarelli M, Kuhn J, Brown M, Feldkamp L. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27:375–89.

    CAS  PubMed  Google Scholar 

  56. Bouxsein M, Radloff S. Quantitative ultrasound of the calcaneus reflects the material properties of calcaneal trabecular bone. J Bone Miner Res. 1997;12:839–46.

    CAS  PubMed  Google Scholar 

  57. Goldstein S, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 1993;53 Suppl 1:S127–33.

    PubMed  Google Scholar 

  58. Snyder BD, Hayes WC. Multiaxial structure-property relations in trabecular bone. In: Mow VC, Ratcliffe A, Woo SL-Y, editors. Biomechanics of diarthrodial joints. New York: Springer; 1990. p. 31–59.

    Google Scholar 

  59. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.

    CAS  PubMed  Google Scholar 

  60. van der Linden JC, Weinans H. Effects of microarchitecture on bone strength. Curr Osteoporos Rep. 2007;5(2):56–61.

    PubMed  Google Scholar 

  61. Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.

    CAS  PubMed  Google Scholar 

  62. van der Linden JC, Homminga J, Verhaar JA, Weinans H. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res. 2001;16(3):457–65.

    PubMed  Google Scholar 

  63. Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone. 1999;25(2):223–8.

    CAS  PubMed  Google Scholar 

  64. Parfitt A. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int. 1984;36(1 Suppl):123–8.

    Google Scholar 

  65. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res. 2000;15(1):32–40.

    CAS  PubMed  Google Scholar 

  66. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.

    CAS  PubMed  Google Scholar 

  67. Link TM, Lotter A, Beyer F, Christiansen S, Newitt D, Lu Y, Schmid C, Majumdar S. Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology. 2000;217(3):855–62.

    CAS  PubMed  Google Scholar 

  68. Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27(2):277–82.

    CAS  PubMed  Google Scholar 

  69. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    PubMed  Google Scholar 

  70. Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: The STRAMBO study. J Bone Miner Res. 2011;26(6):1358–67.

    PubMed  Google Scholar 

  71. Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int. 2013;24(5):1733–40.

    CAS  PubMed  Google Scholar 

  72. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313–24.

    PubMed Central  PubMed  Google Scholar 

  73. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(11):5045–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP. Application of high-resolution skeletal imaging to measurements of volumetric BMD and skeletal microarchitecture in Chinese-American and white women: explanation of a paradox. J Bone Miner Res. 2009;24(12):1953–9.

    PubMed Central  PubMed  Google Scholar 

  75. Wang XF, Wang Q, Ghasem-Zadeh A, Evans A, McLeod C, Iuliano-Burns S, Seeman E. Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and white women. J Bone Miner Res. 2009;24(12):1946–52.

    PubMed  Google Scholar 

  76. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14 Suppl 5:118–27.

    Google Scholar 

  77. Currey J. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.

    CAS  PubMed  Google Scholar 

  78. Currey JD. What determines the bending strength of compact bone? J Exp Biol. 1999;202(Pt 18):2495–503.

    CAS  PubMed  Google Scholar 

  79. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104.

    CAS  PubMed  Google Scholar 

  80. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66.

    CAS  PubMed  Google Scholar 

  81. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32(3):316–23.

    CAS  PubMed  Google Scholar 

  82. Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. 1993;115:534–42.

    CAS  PubMed  Google Scholar 

  83. Meunier PJ, Arlot M, Chavassieux P, Yates AJ. The effects of alendronate on bone turnover and bone quality. Int J Clin Pract Suppl. 1999;101:14–7.

    CAS  PubMed  Google Scholar 

  84. Meunier PJ, Boivin G. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone. 1997;21(5):373–7.

    CAS  PubMed  Google Scholar 

  85. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27(5):687–94.

    CAS  PubMed  Google Scholar 

  86. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001;29(2):185–91.

    CAS  PubMed  Google Scholar 

  87. Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, Meunier PJ. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab. 2003;88(9):4199–205.

    CAS  PubMed  Google Scholar 

  88. Boivin G, Meunier PJ. Methodological considerations in measurement of bone mineral content. Osteoporos Int. 2003;14:22–8.

    Google Scholar 

  89. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88(3):1150–6.

    CAS  PubMed  Google Scholar 

  90. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Fratzl P, Klaushofer K. Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res. 2010;25(1):48–55.

    CAS  PubMed  Google Scholar 

  91. Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.

    PubMed  Google Scholar 

  92. Currey J. Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int. 2003;14:S29–36.

    Google Scholar 

  93. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    CAS  PubMed  Google Scholar 

  94. Knott L, Whitehead CC, Fleming RH, Bailey AJ. Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J. 1995;310(Pt 3):1045–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17(10):1514–23.

    CAS  PubMed  Google Scholar 

  96. Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012;7(4):e35047.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4(8):612–6.

    CAS  PubMed  Google Scholar 

  98. Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10(2):141–50.

    PubMed Central  PubMed  Google Scholar 

  99. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382(6590):448–52.

    CAS  PubMed  Google Scholar 

  100. Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK. Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J. 2006;90(4):1411–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Powell Jr WF, Barry KJ, Tulum I, Kobayashi T, Harris SE, Bringhurst FR, Pajevic PD. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol. 2011;209(1):21–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Burr D. Microdamage and bone strength. Osteoporos Int. 2003;14 Suppl 5:67–72.

    Google Scholar 

  103. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15(1):60–7.

    CAS  PubMed  Google Scholar 

  104. Schaffler M. Role of bone turnover in microdamage. Osteoporos Int. 2003;14:73–80.

    Google Scholar 

  105. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib [see comments]. J Bone Miner Res. 2000;15(4):613–20.

    CAS  PubMed  Google Scholar 

  106. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28(5):524–31.

    CAS  PubMed  Google Scholar 

  107. Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39(4):872–9.

    CAS  PubMed  Google Scholar 

  108. Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res. 2007;22(11):1759–65.

    CAS  PubMed  Google Scholar 

  109. Allen MR, Reinwald S, Burr DB. Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int. 2008;82(5):354–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Allen MR, Burr DB. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone. 2011;49(1):56–65.

    CAS  PubMed  Google Scholar 

  111. Oyen J, Apalset EM, Gjesdal CG, Brudvik C, Lie SA, Hove LM. Vitamin D inadequacy is associated with low-energy distal radius fractures: a case-control study. Bone. 2011;48(5):1140–5.

    CAS  PubMed  Google Scholar 

  112. Maier S, Sidelnikov E, Dawson-Hughes B, Egli A, Theiler R, Platz A, Staehelin HB, Simmen HP, Meier C, Dick W, Grob D, von Eckardstein A, Bischoff-Ferrari HA. Before and after hip fracture, vitamin D deficiency may not be treated sufficiently. Osteoporos Int. 2013;24(11):2765–73.

    CAS  PubMed  Google Scholar 

  113. Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, Vettorazzi E, Zustin J, Hahn M, Ager III JW, Puschel K, Amling M, Ritchie RO. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med. 2013;5(193):193ra88.

    PubMed  Google Scholar 

  114. Yakar S, Courtland HW, Clemmons D. IGF-1 and bone: new discoveries from mouse models. J Bone Miner Res. 2010;25(12):2543–52.

    PubMed Central  PubMed  Google Scholar 

  115. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25(9):2078–88.

    PubMed Central  PubMed  Google Scholar 

  116. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, Klibanski A, Gupta R. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology. 2008;249(3):938–46.

    PubMed Central  PubMed  Google Scholar 

  117. Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, Meenaghan E, Goldstein MA, Bouxsein ML, Misra M, Klibanski A. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Faje AT, Fazeli PK, Miller KK, Katzman DK, Ebrahimi S, Lee H, Mendes N, Snelgrove D, Meenaghan E, Misra M, Klibanski A. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord. 2014;47(5):458–66.

    PubMed  Google Scholar 

  119. Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogues X, Compston JE, Diez-Perez A. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27(2):294–300.

    PubMed  Google Scholar 

  120. Compston JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Diez-Perez A, Cooper C, Chapurlat RD, Boonen S, Anderson Jr FA, Adami S, Adachi JD. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res. 2014;29(2):487–93.

    PubMed  Google Scholar 

  121. Leslie WD, Rubin MR, Schwartz AV, Kanis JA. Type 2 diabetes and bone. J Bone Miner Res. 2012;27(11):2231–7.

    PubMed  Google Scholar 

  122. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res. 2013;28(7):1679–87.

    CAS  PubMed  Google Scholar 

  123. Rocher E, El Hage R, Chappard C, Portier H, Rochefort GY, Benhamou CL. Bone mineral density, hip bone geometry, and calcaneus trabecular bone texture in obese and normal-weight children. J Clin Densitom. 2013;16(2):244–9.

    PubMed  Google Scholar 

  124. Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, Muller R, Zhao B, Guo X, Lang T, Saeed I, Liu XS, Guo XE, Cremers S, Rosen CJ, Stein EM, Nickolas TL, McMahon DJ, Young P, Shane E. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab. 2013;98(6):2562–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Andersen S, Frederiksen KD, Hansen S, Brixen K, Gram J, Stoving RK. Bone structure and estimated bone strength in obese patients evaluated by high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2014;95(1):19–28.

    CAS  PubMed  Google Scholar 

  126. Engelke K. Assessment of bone quality and strength with new technologies. Curr Opin Endocrinol Diabetes Obes. 2012;19(6):474–82.

    PubMed  Google Scholar 

  127. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie LG, Kremer R, Erlandson MC, Dian L, Burghardt AJ, Boyd SK. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.

    PubMed Central  PubMed  Google Scholar 

  128. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Bouxsein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karim, L., Bouxsein, M.L. (2015). Bone Biomechanics and the Determinants of Skeletal Fragility. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics