Skip to main content
Log in

Microdamage and bone strength

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Burr DB, Forwood MR, Fyhrie DP, et al (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15

    CAS  PubMed  Google Scholar 

  2. Mashiba T, Hirano T, Turner CH, et al (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    CAS  PubMed  Google Scholar 

  3. Mashiba T, Turner CH, Hirano T, et al (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28:524–531

    Article  CAS  PubMed  Google Scholar 

  4. Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation? Bone 27:13–20

    Google Scholar 

  5. Brown C, Norman T, Wang Z (1996) Microdamage influences fracture toughness of human cortical bone. Trans Orthop Res Soc 21:58

    Google Scholar 

  6. Norman TL, Yeni YN, Brown CU, Wang Z (1998) Influence of microdamage on fracture toughness of the human femur and tibia. Bone 23:303–306

    Article  CAS  PubMed  Google Scholar 

  7. Burr DB, Turner CH, Naick P, et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345

    Google Scholar 

  8. Schaffler M, Radin EL, Burr DB (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214

    CAS  PubMed  Google Scholar 

  9. Keaveny TM, Wachtel E, Guo X, Hayes W (1994) Mechanical behavior of damaged trabecular bone. J Biomech 27:1309–1318

    CAS  PubMed  Google Scholar 

  10. Jepsen K, Davy D (1997) Comparison of damage accumulation measures in human cortical bone. J Biomech 30:891–894

    Article  CAS  PubMed  Google Scholar 

  11. Pidaparti R, Akyuz U, Naick P, Burr D (2000) Fatigue data analysis of canine femurs under four-point bending. Biomed Mater Eng 10:43–50

    CAS  PubMed  Google Scholar 

  12. Pattin C, Caler W, Carter D (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29:69–79

    Article  CAS  PubMed  Google Scholar 

  13. Schaffler M, Boyce T, Fyhrie D (1996) Tissue and matrix failure modes in human compact bone during tensile fatigue. Trans Orthop Res Soc 21:57

    Google Scholar 

  14. Currey J, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257

    Article  CAS  PubMed  Google Scholar 

  15. Martin R, Burr DB (1989) Structure, function and adaptation of compact bone. Raven Press, New York

  16. Martin R, Burr DB, Sharkey N (1998) Skeletal tissue mechanics. Springer, New York Heidelberg

  17. Frost N (1965) The growth of fatigue cracks. Proc of the First International Conference on Fracture 3:1433–1459

    Google Scholar 

  18. Martin R, Mashiba T, Hirano T, Burr DB (2000) Computer simulation of the effects of bone remodeling suppression on microdamage. Trans Orthop Res Soc 25:35

    Google Scholar 

  19. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  CAS  PubMed  Google Scholar 

  20. Norman TL, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20:375–379

    CAS  PubMed  Google Scholar 

  21. Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  CAS  PubMed  Google Scholar 

  22. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22:381–388

    Article  CAS  PubMed  Google Scholar 

  23. Podenphant J, Engel U (1987) Regional variations in histomorphometric bone dynamics from the skeleton of an osteoporotic woman. Calcif Tissue Int 40:184–188

    CAS  PubMed  Google Scholar 

  24. Rosso R, Minisola S, Scarda A, et al. (1995) Temporal relationship between bone loss and increased bone turnover: A longitudinal study following natural menopause. J Endocrinol Invest 18:723–728

    CAS  PubMed  Google Scholar 

  25. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349

    CAS  PubMed  Google Scholar 

  26. Parfitt A (1996) Skeletal heterogeneity and the purpose of bone remodeling. Implications for the understanding of osteoporosis. In: Kelsey J (ed.) Osteoporosis. Academic Press, San Diego, pp 315–329

    Google Scholar 

  27. Melton LJ, 3rd, Khosla S, Atkinson EJ, O'Fallon WM, Riggs BL. (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091

    PubMed  Google Scholar 

  28. Frost H (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Med Bull 8:27–35

    Google Scholar 

  29. Hasegawa K, Turner CH, Chen J, Burr DB (1995) Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin Orthop 311:190–198

    PubMed  Google Scholar 

  30. Wenzel T, Schaffler MB, Fyhrie D (1996) In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95

    Article  CAS  PubMed  Google Scholar 

  31. Courtney A, Hayes W, Gibson L (1996) Age-related differences in post-yield damage in human cortical bone. Experiment and model. J Biomech 29:1463–1471

    Article  CAS  PubMed  Google Scholar 

  32. Burr D (2002) The contribution of the organic matrix to the bone's material properties. Bone 31:8–11

    Article  CAS  PubMed  Google Scholar 

  33. Norman T, Nivargikar S, Burr DB (1996) Resistance to crack growth in human cortical bone is greater in shear than in tension. J Biomech 29:1023–1031

    Article  CAS  PubMed  Google Scholar 

  34. Zioupos P (2001) Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc 201(Pt2):270–278

    Article  CAS  Google Scholar 

  35. Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66

    Article  CAS  PubMed  Google Scholar 

  36. Yates AJ, Rodan G (1998) Alendronate and osteoporosis. Drug Discovery Today 3:69–78

    Article  CAS  Google Scholar 

  37. Raisz L, Smith JA, Trahiotis M, et al. (2000) Short-term risedronate treatment in postmenopausal women: Effects on biochemical markers of bone turnover. Osteoporos Int 11:615–620

    Article  CAS  PubMed  Google Scholar 

  38. Mongiorgi R, Romagnoli R, Olmi R, Moroni A (1983) Mineral alternations in senile osteoporosis. Biomaterials 4:192–196

    Article  CAS  PubMed  Google Scholar 

  39. Paschallis E, Phipps R (2002) Three-years treatment with risedronate does not alter bone mineral crystallinity in post-menopausal osteoporotic subjects. J Bone Min Res 17 (Suppl 1):S368

    Google Scholar 

  40. Roschger P, Rinnerthaler S, Yates J, et al. (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    Article  CAS  PubMed  Google Scholar 

  41. Boivin G, Meunier P(2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  42. Kendall K (1975) Control of cracks by interfaces in composites. Proc Royal Soc London 341:409–428

    Google Scholar 

  43. Paschallis E, Burr DB, Mendelsohn R, Hock J, Boskey A (2003) Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH (1–34) for 18 months. J Bone Min Res 18:769–775

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burr, D. Microdamage and bone strength. Osteoporos Int 14 (Suppl 5), 67–72 (2003). https://doi.org/10.1007/s00198-003-1476-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-003-1476-2

Keywords

Navigation