Skip to main content

The Neural Crest and Craniofacial Malformations

  • Chapter
  • First Online:
Clinical Neuroembryology

Abstract

The neural crest is a temporary embryonic structure that is composed of a population of multipotent cells that delaminate from the ectoderm by epitheliomesenchymal transformation (► Sect. 5.2). These neural-crest-derived cells or neural crest cells (NCC) contribute to a large number of structures, including the spinal, cranial and autonomic ganglia, the enteric nervous system, the medulla of the adrenal gland, the melanocytes, dermal cells, corneal cells and many of the skeletal and connective tissues of the head (► Sect. 5.3). The whole facial and visceral skeleton and part of the neurocranium are formed from neural crest cells (► Sect. 5.4).

A number of craniofacial malformations have major NCC involvement, and are referred to as neurocristopathies (► Sect. 5.5). Under this heading, the oculoauriculo-vertebral spectrum, Treacher Collins syndrome, 22q11.2 deletion syndrome, frontonasal dysplasia, craniosynostoses and CHARGE, Mowat-Wilson and Waardenburg syndromes are discussed. An increasing number of craniofacial disorders is currently classified as neurocristopathies. Many other syndromes might be due to NCC defects and form neurocristopathies. Examples are syndromes caused by environmental factors such as retinoic acid syndrome (► Sect. 5.6), ciliopathies, resulting from defects in primary cilia (► Sect. 5.7) and holoprosencephaly (► Sect. 5.8). Holoprosencephaly is an early disorder of pattern formation that may lead to closely related forebrain and facial malformations. Abnormal development of the skull, caused by craniosynostoses, i.e. craniofacial malformations due to agenesis or premature ossification of the cranial sutures, is discussed in ► Sect. 5.9. Several clinical cases illustrate these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C et al (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164

    Article  CAS  PubMed  Google Scholar 

  • Abramyan J, Richman JM (2018) Craniofacial development: discoveries made in the chicken embryo. Int J Dev Biol 62:97–107

    Article  CAS  PubMed  Google Scholar 

  • Abramyan J, Thivichon-Prince B, Richman JM (2015) Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat (Lond) 226:420–433

    Article  Google Scholar 

  • Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN (2002) Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129:4613–4625

    Article  CAS  PubMed  Google Scholar 

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    Article  CAS  PubMed  Google Scholar 

  • Acampora D, Avantaggiato V, Tuorte F, Briata P, Corte G, Simeone A (1998) Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development 125:5091–5104

    Article  CAS  PubMed  Google Scholar 

  • Achilleos A, Trainor PA (2015) Mouse models of rare craniofacial disorders. Curr Top Dev Biol 115:413–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addissie YA, Troia A, Wong ZC, Everson JL, Kozel BA, Muenke M et al (2021) Identifying environmental risk factors and gene-environmental interactions in holoprosencephaly. Birth Defects Res 113:63–76

    Article  CAS  PubMed  Google Scholar 

  • Adelmann HB (1925) The development of the neural folds and cranial ganglia in the rat. J Comp Neurol 39:19–171

    Article  Google Scholar 

  • Adelmann HB (1936) The problem of cyclopia. Q Rev Biol 11:116–182, 284–304

    Google Scholar 

  • Ahlgren SC, Bronner-Fraser M (1999) Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr Biol 9:1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Aicardi J (1998) Diseases of the nervous system in childhood, 2nd edn. Mac Keith, London

    Google Scholar 

  • Akbaroghli S, Kooshavar D, Golchehre Z, Karamzade A, Saberi M, Alaei MR et al (2022) Next-generation sequencing identified novel truncating mutations in BBS9 causing Bardet Biedl syndrome in two Iranian consanguineous families. Iran J Child Neurol 16:123–133

    PubMed  PubMed Central  Google Scholar 

  • Aleksic S, Budzilovich G, Greco MA, McCarthy J, Reuben R, Margolis S et al (1984) Intracranial lipomas, hydrocephalus and other CNS anomalies in oculoauriculo-vertebral dysplasia (Goldenhar-Gorlin syndrome). Childs Brain 11:285–297

    CAS  PubMed  Google Scholar 

  • Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  CAS  PubMed  Google Scholar 

  • Allanson JE, Cunniff C, Hoyme HE, McGaughran J, Muenke M, Neri G (2009) Elements of morphology: standard terminology for the head and face. Am J Med Genet A 149A:6–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Ankamreddy H, Koo H, Lee YJ, Bok J (2020) CXCL12 is required for stirrup-shaped stapes formation during mammalian middle ear development. Dev Dyn 249:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Anson BJ, Bast TH, Cauldwell EW (1948) The development of the auditory ossicles, the otic capsule and the extracapsular tissues. Ann Otol Rhinol Laryngol 57:603–632

    Article  CAS  PubMed  Google Scholar 

  • Anson BJ, Hanson JS, Richany SF (1960) Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann Otol Rhinol Laryngol 69:427–447

    Article  CAS  PubMed  Google Scholar 

  • Anthwal N, Thompson H (2016) The development of the mammalian outer and middle ear. J Anat (Lond) 228:217–232

    Article  Google Scholar 

  • Apert E (1906) De l’acrocéphalosyndactylie. Bull Soc Méd (Paris) 23:1310–1330

    Google Scholar 

  • Arauz RF, Solomon BD, Pineda-Alvarez DE, Gropman AL, Parsons JA, Roessler E, Muenke M (2010) A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans. Mol Syndromol 1:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aybar MJ, Mayor R (2002) Early induction of neural crest cells: Lessons learned from frog, fish and chick. Curr Opin Genet Dev 12:452–458

    Article  CAS  PubMed  Google Scholar 

  • Aybar MJ, Nieto MA, Mayor R (2003) Snail precedes Slug in the genetic cascade required for the specification and migration of Xenopus neural crest. Development 130:483–494

    Article  CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J et al (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber BA, Rastegar M (2010) Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 192:261–274

    Article  CAS  PubMed  Google Scholar 

  • Bardeen R (1910) Die Entwicklung des Schädels, des Zungenbeins und des Kehlkopfskeletts. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen, I. Band. Hirzel, Leipzig, pp 402–456

    Google Scholar 

  • Barlow AJ (2014) Neural crest cells in enteric nervous system development and disease. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 4–26

    Google Scholar 

  • Barriga EH, Trainor PA, Bronner M, Mayor R (2015) Animal models for studying neural crest development: is the mouse different? Development 142:1555–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartelmez GW, Blount MP (1954) The formation of neural crest from the primary optic vesicle in man. Contrib Embryol Carnegie Inst 35:55–91

    Google Scholar 

  • Basch ML, Bronner-Fraser M, Garcia-Castro ML (2006) Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441:218–222

    Article  CAS  PubMed  Google Scholar 

  • Bassez G, Camant OJA, Cacheux V, Kobetz A, Dastot-Le Moal F, Marchand D et al (2004) Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat-Wilson” syndrome. Neurobiol Dis 15:240–250

    Article  CAS  PubMed  Google Scholar 

  • Batten EH (1958) The origin of the acoustic ganglion in the sheep. J Embryol Exp Morphol 6:597–615

    CAS  PubMed  Google Scholar 

  • Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 36:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bear KA, Solomon BD, Antonini S, Arnhold IJP, Franca MM, Gerkes EH et al (2014) Pathognomic mutations in GLI2 cause a specific phenotype that is distinct from holoprosencephaly. J Med Genet 51:413–418

    Article  CAS  PubMed  Google Scholar 

  • Belloni E, Muenke M, Roessler E, Traverso G, Siegel-Bartelt J, Frumkin A et al (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14:353–356

    Article  CAS  PubMed  Google Scholar 

  • Bendavid C, Dupé V, Rochard L, Gicquel I, Dubourg C, David V (2010) Holoprosencephaly: an update on cytogenetic abnormalities. Am J Med Genet C 154C:86–92

    Article  Google Scholar 

  • Bernier FP, Caluseriu O, Ng S, Schwartzentruber J, Buckingham KJ, Innes AR et al (2012) Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet 90:925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry SM, Gosden C, Snijders RJM, Nicolaides KH (1990) Fetal holoprosencephaly. Associated malformations and chromosomal defects. Fetal Diagn Ther 5:92–99

    Article  CAS  PubMed  Google Scholar 

  • Beverdam A, Brouwer A, Reijnen M, Korving J, Meijlink F (2001) Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development 128:3975–3986

    Article  CAS  PubMed  Google Scholar 

  • Bixler D, Ward R, Gale DD (1985) Agnathia-holoprosencephaly: a developmental field complex involving face and brain. Report of 3 cases. J Craniofac Genet Dev Biol Suppl 1:241–249

    Google Scholar 

  • Blaas H-GK, Eik-Nes SH, Vainio T, Isaksen CV (2000) Alobar holoprosencephaly at 9 weeks gestational age visualized by two- and three-dimensional ultrasound. Ultrasound Obstet Gynecol 15:62–65

    Article  CAS  PubMed  Google Scholar 

  • Blaas H-GK, Eriksson AG, Salvesen KÅ, Isaksen CV, Christensen B, Møllerløkken G, Eik-Nes SH (2002) Brains and faces in holoprosencephaly: pre-and postnatal description of 30 cases. Ultrasound Obstet Gynecol 19:24–38

    Article  CAS  PubMed  Google Scholar 

  • Blanco R, Colombo A, Suazo J (2015) Maternal obesity is a risk factor for orofacial clefts: a meta-analysis. Br J Oral Maxillofac Surg 53:669–704

    Article  Google Scholar 

  • Bochukova EG, Roscioli T, Hedges DJ, Taylor IB, David DJ et al (2009) Rare mutations of FGFR2 causing Apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily. Hum Mutat 30:204–211

    Article  CAS  PubMed  Google Scholar 

  • Bolande RP (1974) The neurocristopathies: a unifying concept of disease arising in neural crest development. Hum Pathol 4:409–429

    Article  Google Scholar 

  • Boshart L, Vlot EA, Vermeij-Keers C (2000) Epithelio-mesenchymal transformation in the embryonic face: implications for craniofacial malformations. Eur J Plast Surg 23:217–223

    Article  Google Scholar 

  • Bovolenta P, Mallamaci A, Boncinelli E (1996) Cloning and characterization of two chick homeobox genes, members of the Six/sine oculis family, expressed during eye development. Int J Dev Biol 1(Suppl):738–748

    Google Scholar 

  • Bronner ME, Le Douarin NM (2012) Development and evolution of the neural crest: an overview. Dev Biol 366:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronner-Fraser M, Fraser S (1989) Development potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    Article  CAS  PubMed  Google Scholar 

  • Brotto D, Manara R, Ghiselli S, Lovo E, Mardari R, Toldo I et al (2017) Oculo-auriculo-vertebral spectrum: going beyond the first and second pharyngeal arch development. Neuroradiology 59:305–316

    Article  Google Scholar 

  • Brown SA, Warburton D, Brown LY, Yu C, Roeder ER, Stengel-Rutkowski S et al (1998) Holoprosencephaly due to mutation in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 20:180–183

    Article  CAS  PubMed  Google Scholar 

  • Bruel A-L, Franco B, Duffourd Y, Thevenon J, Jego L, Lopez E et al (2017) Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes. J Med Genet 54:371–380

    Article  CAS  PubMed  Google Scholar 

  • Brugmann SA, Cordero DR, Helms JL (2010) Craniofacial ciliopathies: a new classification for craniofacial disorders. Am J Med Genet A 152A:2995–3006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull JS, Nixon WL, Pratt RT (1955) Radiological criteria and familial occurrence of primary basilar impression. Brain 78:229–247

    Article  CAS  PubMed  Google Scholar 

  • Bush JO, Jiang R (2012) Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacheux Y, Dastot-Le Moal F, Kääriäinen H, Bondurand N, Rintala R, Boissier B et al (2001) Loss-of-function mutations in SIP1 Smad interacting protein 1 results in a syndromic Hirschsprung disease. Hum Mol Genet 10:1503–1510

    Article  CAS  PubMed  Google Scholar 

  • Calpena E, Hervieux A, Kaserer T, Swagemakers SMA, Goos JAC, Popoola O et al (2019) De novo missense substitutions in the gene encoding CDK8, a regulator of the mediator complex, cause a syndromic developmental disorder. Am J Hum Genet 104:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calpena E, Cuellar A, Bala K, Swagemakers SMA, Koelling N, McGowan SJ, Phipps JM et al (2020) SMAD6 variants in craniosynostosis: genotype and phenotype evaluation. Genet Med 22:1498–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E cadherin expression. Nat Cell Biol 2:78–83

    Article  Google Scholar 

  • Capecchi MR (1997) The role of Hox genes in hindbrain development. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and cellular approaches to neural development. Oxford University Press, New York, pp 334–355

    Google Scholar 

  • Cargile CB, McIntosh I, Clough MV, Rutberg J, Yaghmai R, Goodman BK et al (2000) Delayed membranous ossification of the cranium associated with familial translocation (2;3) (p15;q12). Am J Med Genet 92:328–335

    Article  CAS  PubMed  Google Scholar 

  • Carré A, Hamza RT, Kariyawasam D, Guillot L, Teissier R, Tron E et al (2014) A novel FOXE1 mutation (R738) in Bamforth-Lazarus syndrome causing increased thyroid gene expression. Thyroid 24:649–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll K, Mossey PA (2012) Anatomical variations in clefts of the lip with or without cleft palate. Plast Surg Int 2012:542078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassina M, Cerqua C, Rossi S, Salviati L, Martini A, Clementi M, Trevisson E (2017) A synonymous splicing mutation in the SF3B4 gene segregates in a family with highly variable Nager syndrome. Eur J Hum Genet 25:371–375

    Article  CAS  PubMed  Google Scholar 

  • Castanet M, Polak M (2010) Spectrum of Foxe1/TTF2 mutations. Horm Res Paediatr 73:423–429

    Article  CAS  PubMed  Google Scholar 

  • Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF (2007) Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9:267–277

    Article  CAS  PubMed  Google Scholar 

  • Cebra-Thomas JA, Terrell A, Branyan K, Shah S, Rice R, Gyi L et al (2013) Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenetic ectomesenchyme in the plastron. Dev Dyn 242:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Celik T, Simsek PO, Sozen T, Ozyuncu O, Utine GE, Talim B et al (2012) PRRX1 is mutated in an otocephalic newborn infant conceived by consanguineous parents. Clin Genet 81:294–297

    Article  CAS  PubMed  Google Scholar 

  • Ceruti S, Stinckens C, Cremers C, Casselman JW (2002) Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computer tomographic and magnetic resonance imaging findings. Otol Neurotol 23:200–207

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Sorrentino S, Davis EE, Martin-Coignard D, Iacovelli A, Paznekas W et al (2012) OTX2 mutations contribute to the otocephaly-dysgnathia complex. J Med Genet 49:373–379

    Article  CAS  PubMed  Google Scholar 

  • Chemke J, Mogilner BM, Ben-Itzhak I, Zurkowski L, Ophir D (1988) Autosomal recessive inheritance of Nager acrofacial dysostosis. J Med Genet 25:230–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang Z, Chen Y, Zhang Y (2019) Condition deletion of Bmp2 in cranial neural crest cells recapitulate Pierre Robin sequence in mice. Cell Tissue Res 376:199–210

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 350:473–479

    Article  CAS  PubMed  Google Scholar 

  • Chotzen F (1932) Eine eigenartige familiäre Entwicklungsstörung (Akrocephalosyndactylie, Dysostosis craniofacialis und Hypertelorismus). Monatschr Kinderheilk 55:97–122

    Google Scholar 

  • Clark K, Bender G, Murray BP, Panfilio K, Cook S, Davis R et al (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DE, Passos-Bueno MR, Tavares AL, Lyonnet S, Amiel J, Gordon CT (2013) Understanding the basis of auriculocondylar syndrome: insights from human, mouse and zebrafish genetic studies. Am J Med Genet C 163C:306–317

    Article  Google Scholar 

  • Cohen MM Jr (1979) Craniofrontonasal dysplasia. Birth Defects 15:85–89

    PubMed  Google Scholar 

  • Cohen MM Jr (1989a) Perspectives on holoprosencephaly: Part I. Epidemiology, genetics, and syndromology. Teratology 40:211–235

    Article  PubMed  Google Scholar 

  • Cohen MM Jr (1989b) Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. Am J Med Genet 34:271–288

    Article  PubMed  Google Scholar 

  • Cohen MM Jr (1993) Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. Am J Med Genet 45:300–307

    Article  PubMed  Google Scholar 

  • Cohen MM Jr (2002) Malformations of the craniofacial region: evolutionary, embryonic, genetic, and clinical perspectives. Am J Med Genet 115:245–268

    Article  PubMed  Google Scholar 

  • Cohen MM Jr, Kreiborg S (1990) The central nervous system in the Apert syndrome. Am J Med Genet 35:36–45

    Article  PubMed  Google Scholar 

  • Cohen MM Jr, Kreiborg S (1993) An updated pediatric perspective on the Apert syndrome. Am J Dis Child 147:989–993

    PubMed  Google Scholar 

  • Cohen MM Jr, Kreiborg S (1995) Hands and feet in the Apert syndrome. Am J Med Genet 57:82–96

    Article  PubMed  Google Scholar 

  • Cohen MM Jr, MacLean RE (eds) (2000) Craniosynostosis: diagnosis, evaluation, and management, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Cohen MM Jr, Shiota K (2002) Teratogenesis of holoprosencephaly. Am J Med Genet 109:1–15

    Article  PubMed  Google Scholar 

  • Cohen MM Jr, Sulik KK (1992) Perspectives on holoprosencephaly: Part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. J Craniofac Genet Dev Biol 12:196–244

    PubMed  Google Scholar 

  • Comijn J, Brex G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Condie BG, Capecchi MR (1994) Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370:304–307

    Article  CAS  PubMed  Google Scholar 

  • Conley ME, Beckwith JB, Mancer JFK, Tenckhoff L (1979) The spectrum of the DiGeorge syndrome. J Pediatr 94:883–890

    Article  CAS  PubMed  Google Scholar 

  • Conley ZR, Hague M, Kurosaka H, Dixon J, Dixon MJ, Trainor PA (2016) A quantitative method for defining high-arched palate using the Tcof1−/− mutant mouse as a model. Dev Biol 415:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA (2011) Cranial neural crest cells on the move: their roles in craniofacial development. Am J Med Genet A 155A:270–279

    Article  PubMed  Google Scholar 

  • Coria F, Quintana F, Rebollo M, Combarras O, Berciano J (1983) Occipital dysplasia and Chiari type I deformity in a family. Clinical and radiological study of three generations. J Neurol Sci 62:147–158

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen M, Ottelander BD, Rizopoulos D, van der Hulst R, Mink van der Meulen A, van der Horst C et al (2016) Increase of prevalence of craniosynostosis. J Craniomaxilloac Surg 44:1273–1279

    Article  Google Scholar 

  • Cornelissen M, Loudon SE, van Doorn FEC, Muller RPM, van Veelen MC, Mathijssen IMJ (2017) Very low prevalence of intracranial hypertension in trigonocephaly. Plast Reconstr Surg 139:97e–104e

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1988) The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 103(Suppl):101–113

    Article  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1990) Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development 108:543–558

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    Article  CAS  PubMed  Google Scholar 

  • Couly G, Grapin-Bottom A, Coltey PM, Ruhin B, Le Douarin NM (1998) Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 125:3445–3459

    Article  CAS  PubMed  Google Scholar 

  • Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM (2002) Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 129:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Cousley RRJ, Calvert ML (1997) Current concepts in the understanding of hemifacial microsomia. Br J Plast Surg 50:536–551

    Article  CAS  PubMed  Google Scholar 

  • Creuzet S, Couly G, Vincent C, Le Douarin NM (2002) Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129:4301–4313

    Article  CAS  PubMed  Google Scholar 

  • Creuzet S, Schuler B, Couly G, Le Douarin NM (2004) Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci U S A 101:4843–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creuzet S, Couly G, Le Douarin NM (2005) Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. Proc Natl Acad Sci U S A 103:14033–14038

    Article  Google Scholar 

  • Croen LA, Shaw GM, Lammer EJ (1996) Holoprosencephaly: epidemiologic and clinical characteristics of a California population. Am J Med Genet 64:465–472

    Article  CAS  PubMed  Google Scholar 

  • Crouzon O (1912) Dysostose craniofaciale héréditaire. Bull Med Soc Med Hôp (Paris) 33:545–555

    Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 66:445–468

    Article  Google Scholar 

  • Dash S, Trainor PA (2020) The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 137:115409

    Article  CAS  PubMed  Google Scholar 

  • Dastot-Le Moal F, Wilson M, Mowat D, Collot N, Niel F, Goossens (2007) ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat 28:313–321

    Article  CAS  PubMed  Google Scholar 

  • Dauwerse JG, Dixon J, Seland S, Ruitenkamp CAL, van Haeringen A, Hoefsloot LH et al (2011) Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet 43:20–22

    Article  CAS  PubMed  Google Scholar 

  • de Crozé N, Maczkowiak F, Monsoro-Burq AH (2011) Reiterative AP2a activity controls sequential steps in the neural crest gene regulating network. Proc Natl Acad Sci U S A 108:155–160

    Article  PubMed  Google Scholar 

  • de Heer IM, Hoogeboom AJM, Eussen HJ, Vaandrager JM, de Klein A (2004) Deletion of the TWIST gene in a large five-generation family. Clin Genet 65:396–399

    Article  PubMed  Google Scholar 

  • de Jong T, Bannink N, Bredero-Boelhouwer HH, Van Veelen ML, Bartels MC, Hoeve LJ et al (2009) Long-term functional outcome in 167 patients with syndromic craniosynostosis; defining a syndrome-specific risk profile. J Plast Reconstr Aesthet Surg 63:1635–1641

    Article  PubMed  Google Scholar 

  • Dehgan R, Behnam M, Salehi M, Kelishadi R (2022) Novel mutations in the MKKS, BBS7, and ALMS1 genes in Iranian children with clinically suspected Bardet-Biedl syndrome. Case Rep Ophthalmol Med 2022:6110775

    Google Scholar 

  • DeMyer WE (1967) The median-cleft syndrome. Differential diagnosis of cranium bifidum occultum, hypertelorism, and median cleft nose, lip, and palate. Neurology 17:961–971

    Article  CAS  PubMed  Google Scholar 

  • DeMyer WE, Zeman W, Palmer CG (1963) Familial holoprosencephaly (arhinencephaly) with median cleft palate. Neurology 13:913–918

    Article  CAS  PubMed  Google Scholar 

  • DeMyer WE, Zeman W, Palmer CG (1964) The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–263

    Article  CAS  PubMed  Google Scholar 

  • Diewert VM, Wang K-Y (1992) Recent advances in primary palate and midface morphogenesis research. Crit Rev Oral Biol Med 4:111–130

    Article  CAS  PubMed  Google Scholar 

  • DiGeorge AM (1965) Discussion on a new concept of the cellular basis of immunology. J Pediatr 67:907

    Article  Google Scholar 

  • Dixon MJ, Marres HAM, Edwards SJ, Dixon J, Cremers CWRJ (1994) Treacher Collins syndrome: correlation between clinical and genetic linkage studies. Clin Dysmorphol 3:96–103

    CAS  PubMed  Google Scholar 

  • Dixon J, Hovanes K, Shiang R, Dixon MJ (1997) Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1. Hum Mol Genet 6:727–737

    Article  CAS  PubMed  Google Scholar 

  • Dixon J, Brakebusch C, Fässler R, Dixon MJ (2000) Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, Treacher Collins syndrome. Hum Mol Genet 9:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, Dixon MJ, Trainor PA (2006) Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 103:13403–13408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon J, Trainor PA, Dixon MJ (2007) Treacher Collins syndrome. Orthod Craniofac Res 10:88–95

    Article  PubMed  Google Scholar 

  • Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domené S, Roessler E, El-Jaick KB, Snir M, Brown JL, Vélez JI et al (2008) Mutations in the human SIX3 gene in holoprosencephaly are loss of function. Hum Mol Genet 17:3919–3928

    Article  PubMed  PubMed Central  Google Scholar 

  • Donnenfeld AE, Packer RJ, Zackai EH, Chee CM, Sellinger B, Emanuel BS (1989) Clinical, cytogenetic, and pedigree findings in 18 cases of Aicardi syndrome. Am J Med Genet 32:461–467

    Article  CAS  PubMed  Google Scholar 

  • Driscoll DA, Burdoff ML, Emanuel BS (1992a) A genetic etiology for the DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 50:924–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll DA, Spinner ND, Burdoff ML (1992b) Deletions and microdeletions of 22q11.2 in velo-cardiofacial syndrome. Am J Med Genet 44:261–268

    Article  CAS  PubMed  Google Scholar 

  • Duband JL, Monier F, Delannet M, Newgreen D (1995) Epithelium-mesenchyme transition during neural cell development. Acta Anat (Basel) 154:63–78

    Article  CAS  PubMed  Google Scholar 

  • Dubourg C, Carré W, Hamdi-Rozé H, Mouden C, Roume J, Abdelmajid B et al (2016) Mutational spectrum in holoprosencephaly shows that FGF8 is a new major signaling pathway. Hum Mutat 37:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Dubourg C, Kim A, Watrin E, de Tayrac M, Odent S, David V et al (2018) Recent advances in understanding inheritance of holoprosencephaly. Am J Med Genet C Semin Med Genet 178:258–269

    Article  PubMed  Google Scholar 

  • Dubucs C, Chassaing N, Sergi C, Aubert-Mucca M, Attie-Bitach T, Lacombe D et al (2021) Re-focussing on agnathia-otocephaly complex. Clin Oral Invest 25:1353–1362

    Article  CAS  Google Scholar 

  • Duhamel B (1966) Morphogenèse Pathologique. Masson, Paris

    Google Scholar 

  • Dupé V, Rochard L, Mercier S, Le Pétillon Y, Gicquel I, Bendavid B et al (2011) NOTCH, a new signaling pathway implicated in holoprosencephaly. Hum Mol Genet 20:1121–1131

    Article  Google Scholar 

  • Dupin E, Coelho-Aguiar JM (2013) Isolation and differentiation properties of neural crest stem cells. Cytometry A 83A:38–47

    Article  CAS  Google Scholar 

  • Durbec PL, Larsson-Blomberg LB, Schuchardt A, Constantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358

    Article  CAS  PubMed  Google Scholar 

  • Eagleson GW, Harris WA (1990) Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J Neurobiol 21:427–440

    Article  CAS  PubMed  Google Scholar 

  • Eagleson HW, Ferreiro B, Harris WA (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus brain. J Neurobiol 28:146–158

    Article  CAS  PubMed  Google Scholar 

  • Edison R, Muenke M (2003) The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Cong Anom 43:1–21

    Article  CAS  Google Scholar 

  • El Ghouzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D et al (1997) Mutations in the TWIST gene in Saethre-Chotzen syndrome. Nat Genet 15:42–46

    Article  Google Scholar 

  • El-Jaick KB, Powers SE, Bartholin L, Myers KR, Hahn J, Orioli IM et al (2007) Functional analysis of mutations in TG1F associated with holoprosencephaly. Mol Genet Metab 90:97–111

    Article  CAS  PubMed  Google Scholar 

  • Emanuel BS, McDonald-McGinn D, Saitta SC, Zackai EH (2001) The 22q11.2 deletion syndrome. Adv Pediatr Infect Dis 48:39–73

    CAS  Google Scholar 

  • Espinosa-Parrilla Y, Amiel J, Augé J, Encha-Ravazi F, Munrich A, Lyonnet S et al (2002) Expression of the SMADIP1 gene during early human development. Mech Dev 114:187–191

    Article  CAS  PubMed  Google Scholar 

  • Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Etchevers HC, Amiel J, Lyonnet S (2006) Molecular basis of human neurocristopathies. Adv Exp Med Biol 589:213–234

    Article  CAS  PubMed  Google Scholar 

  • Etchevers HC, Dupin E, Le Douarin NM (2019) The diverse neural crest: from embryology to human pathology. Development 146:dev169821

    Article  PubMed  Google Scholar 

  • Evrard L, Vanmuylder N, Dourov N, Hermans C, Biermans J, Werry-Huet A, Rooze M, Louryan S (2000) Correlation of HSP110 expression with all-trans retinoic acid-induced apoptosis. J Craniofac Genet Dev Biol 20:183–192

    CAS  PubMed  Google Scholar 

  • Farlie PG, Baker NL, Yap P, Tan TY (2016) Frontonasal dysplasia: towards an understanding of molecular and developmental aetiology. Mol Syndromol 7:312–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer DT, Mlcochova H, Zhou Y, Koelling N, Wang G, Ashley N et al (2021) The developing mouse coronal suture at single-cell resolution. Nat Commun 12:4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favier B, Dollé P (1997) Developmental functions of mammalian Hox genes. Mol Hum Reprod 3:115–131

    Article  CAS  PubMed  Google Scholar 

  • Ferrante MI, Giorgio G, Feather SA, Dulfone A, Wright V, Ghiani M et al (2001) Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 68:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante MI, Zullo A, Barra A, Bimonte S, Messadeq N, Studer M et al (2006) Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 38:112–117

    Article  CAS  PubMed  Google Scholar 

  • Ferrante MI, Romio L, Castro S, Collin JE, Goulding DA, Stemple DL et al (2009) Convergent extension movements and ciliary function are mediated by odf1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 18:289–303

    Article  CAS  PubMed  Google Scholar 

  • Fitch N, Lindsay JR, Srolovitz H (1976) The temporal bone in the preauricular pit, cervical fistula, hearing loss syndrome. Ann Otol Rhinol Laryngol 85:268–275

    Article  CAS  PubMed  Google Scholar 

  • Fitriasari S, Trainor PA (2021) Diabetes, oxidative stress, and DNA damage modulate cranial neural crest cell development and the phenotype variability of craniofacial disorders. Front Cell Dev Biol 9:644410

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleenor SJ, Begbie J (2014) Neural crest cell and placode interactions in cranial PNS development. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 153–165

    Chapter  Google Scholar 

  • Florisson JMG, Van Veelen MLC, Bannink N, Van Adrichem LNA, Van der Meulen JJNM, Bartels MC, Mathijssen IM (2010) Papilledema in isolated single-suture craniosynostosis: prevalence and predictive factors. J Craniofac Surg 21:20–24

    Article  PubMed  Google Scholar 

  • Forsythe E, Kenny J, Bacchelli C, Beales PL (2018) Managing Bardet-Biedl syndrome now and in the future. Front Pediatr 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Franceschetti A, Klein D (1949) Mandibulo-facial dysostosis: new hereditary syndrome. Acta Ophthalmol 27:144–224

    Google Scholar 

  • Francis-West PH, Robson L, Evans DJR (2003) Craniofacial development: the tissue and molecular interactions that control development of the head. Adv Anat Embryol Cell Biol 169:1–144

    Article  Google Scholar 

  • Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgfg8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    Article  CAS  PubMed  Google Scholar 

  • Frisdal A, Trainor PA (2014) Development and evolution of the pharyngeal apparatus. Wiley Interdiscipl Rev Dev Biol 3:403–418

    Article  Google Scholar 

  • Fujimoto A, Lipson M, Lacro RV, Shinno NW, Boelter WD, Jones KL et al (1987) New autosomal dominant branchio-oculo-facial syndrome. Am J Med Genet 27:943–951

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Gammill LS, Bronner-Fraser M (2003) Neural crest specification: migrating into genomics. Nat Rev Neurosci 4:795–805

    Article  CAS  PubMed  Google Scholar 

  • Gammill LS, Gonzalez C, Bronner-Fraser M (2007) Neuropilin 2/semaphorin 3F signaling is essential for cranial neuralcrest migration and trigeminal ganglion condensation. Dev Neurobiol 67:47–56

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Miňaur S, Mavrogiannis LA, Rannan-Eliya SV, Hendry MA, Liston WA, Porteous MEM, Wilkie AOM (2003) Parietal foramina with cleidocranial dysplasia is caused by mutation in MSX2. Eur J Hum Genet 11:892–895

    Article  PubMed  Google Scholar 

  • Gasser RF (2006) Evidence that some events of mammalian embryogenesis can result from differential growth, making migration unnecessary. Anat Rec B 289B:53–63

    Article  Google Scholar 

  • Geelen JAG, Langman J (1977) Closure of the neural tube in the cephalic region of the mouse embryo. Anat Rec 189:625–640

    Article  CAS  PubMed  Google Scholar 

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells in the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408

    Article  PubMed  Google Scholar 

  • Glaser RL, Jiang W, Boyadjiev SA, Tran AK, Zachary AA, Van Maldergem L et al (2000) Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet 66:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg R, Motzkin B, Marion R, Scambler PJ, Shprintzen RJ (1993) Velocardiofacial syndrome. A review of 120 patients. Am J Med Genet 45:313–319

    Article  CAS  PubMed  Google Scholar 

  • Golden JA (1998) Holoprosencephaly: a defect in brain patterning. J Neuropathol Exp Neurol 57:991–999

    Article  CAS  PubMed  Google Scholar 

  • Golden JA, Chernoff GF (1993) Intermittent pattern of neural tube closure in two strains of mice. Teratology 47:73–80

    Article  CAS  PubMed  Google Scholar 

  • Golden JA, Chernoff GF (1995) Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly). Pediatrics 95:506–510

    CAS  PubMed  Google Scholar 

  • Golding J, Trainor P, Krumlauf R, Gassman M (2000) Defects in pathfinding by cranial neural crest cells in mice lacking the Neuregulin receptor ErbB4. Nat Cell Biol 2:103–109

    Article  CAS  PubMed  Google Scholar 

  • Goriely A, Wilkie AOM (2012) Paternal age effects mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90:175–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Hennekam RCM (eds) (2001) Syndromes of the head and neck, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Goulding EH, Pratt RM (1986) Isotretinoin teratogenicity in mouse whole embryo culture. J Craniofac Genet Dev Biol 6:99–112

    CAS  PubMed  Google Scholar 

  • Graham A, Begbie J (2000) Neurogenic placodes: a common front. Trends Neurosci 23:313–316

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Shimeld SM (2013) The origin and evolution of the ectodermal placodes. J Anat (Lond) 222:32–40

    Article  Google Scholar 

  • Graham A, Smith A (2001) Patterning the pharyngeal arches. BioEssays 23:54–61

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Heyman I, Lumsden A (1993) Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain. Development 119:233–245

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Francis-West P, Brickell P, Lumsden A (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372:684–686

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Begbie J, McGonnell I (2004) Significance of the cranial neural crest. Dev Dyn 229:5–13

    Article  PubMed  Google Scholar 

  • Graham A, Okabe M, Quinlan R (2005) The role of the endoderm in the development and evolution of the pharyngeal arches. J Anat (Lond) 207:479–487

    Article  Google Scholar 

  • Graw J (2010) Eye development. Curr Top Dev Biol 90:343–386

    Article  PubMed  Google Scholar 

  • Gripp KW, Edwards MC, Mowat D, Meinecke P, Richieri-Costa A, Zarkai EH et al (1998) Mutations in the transcription factor TGIF in holoprosencephaly. Am J Hum Genet 63:A32

    Google Scholar 

  • Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P et al (2000) Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 25:205–208

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (1999) The neural crest in development and evolution. Springer, New York

    Book  Google Scholar 

  • Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC et al (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly: a new syndrome? I. Clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74

    Article  CAS  PubMed  Google Scholar 

  • Hall BD, Graham JM Jr, Cassidy SB, Opitz JM (2009) Elements of morphology: standard terminology for the periorbital region. Am J Med Genet A 149A:29–39

    Article  PubMed  Google Scholar 

  • Hanson JR, Anson BJ, Strickland EM (1962) Branchial sources of the auditory ossicles in man. Arch Otolaryngol 76:100–122, 200–215

    Article  PubMed  Google Scholar 

  • Harville EW, Wilcox AJ, Lie RT, Vindemes H, Abyholm F (2005) Cleft lip and palate versus cleft lip only: are they distinct defects? Am J Epidemiol 162:448–453

    Article  PubMed  Google Scholar 

  • Hatta K, Kimmel CB, Ho RK (1991) The cyclops mutation blocks specification on the floor plate of the zebrafish central nervous system. Nature 350:339–341

    Article  CAS  PubMed  Google Scholar 

  • Hatta K, Puschel AW, Kimmel CB (1994) Midline signaling in the primordium of the zebrafish anterior CNS. Proc Natl Acad Sci U S A 91:2061–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori H, Okuno T, Momoi T, Kataoka K, Mikawa H, Shiota K (1987) Single central maxillary incisor and holoprosencephaly. Am J Med Genet 28:483–487

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8–20

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  CAS  PubMed  Google Scholar 

  • Heaton ND, Garrett JR, Howard ER (1988) The enteric nervous system. In: Bannister R (ed) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford University Press, Oxford, pp 238–263

    Google Scholar 

  • Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187:25–35

    Article  CAS  PubMed  Google Scholar 

  • Hide T, Hatakeyama J, Kimura-Yoshida C, Tian E, Takeda N, Ushio Y et al (2002) Genetic modifiers of otocephalic phenotypes in Otx2 heterozygous mutant mice. Development 129:4347–4357

    Article  CAS  PubMed  Google Scholar 

  • Hinrichsen K (1985) The early development of morphology and patterns of the face in the human embryo. Adv Anat Embryol Cell Biol 98:1–79

    Article  CAS  PubMed  Google Scholar 

  • Hinrichsen KV (1990) Gesichtsentwicklung. In: Hinrichsen KV (ed) Humanembryologie. Springer, Berlin, pp 650–692

    Chapter  Google Scholar 

  • His W (1868) Untersuchungen über die erste Anlage des Wirbelthierleibes. Die erste Entwickelung des Hünchens im Ei. Vogel, Leipzig

    Book  Google Scholar 

  • His W (1885) Anatomie menschlicher Embryonen, III: Zur Geschichte der Organe. Vogel, Leipzig

    Google Scholar 

  • Hochstetter F (1891) Ueber die Bildung der inneren Nasengänge oder primitiven Choanen. Verh Anat Ges (Anat Anz Suppl) 6:145–151

    Google Scholar 

  • Hoefkens MF, Vermeij-Keers C, Vaandrager JM (2004) Crouzon syndrome: phenotypic signs and symptoms of the postnatally expression subtype. J Craniofac Surg 15:233–240

    Article  PubMed  Google Scholar 

  • Holmes G, Basilico C (2012) Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 368:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes G, Rothschild G, Basu Roy U, Deng CX, Mansukhani A, Basilico C (2009) Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol 328:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Hu P, Roessler E, Hu T, Muenke M (2018) Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly. Hum Mol Genet 27:1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörstadius S (1950) The neural crest. Oxford University Press, Oxford

    Google Scholar 

  • Hoving EW (1993) Frontoethmoidal encephaloceles. A study of their pathogenesis. Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Howard ER, Garrett JR (1970) Histochemistry and electron microscopy of rectum and colon in Hirschsprung disease. Proc R Soc Med 63:20–22

    Google Scholar 

  • Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz I, de Luna R et al (1997) Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 15:36–41

    Article  PubMed  Google Scholar 

  • Hsia YE, Bratu M, Herbordt A (1971) Genetics of the Meckel syndrome (dysencephalia splanchnocystica). Pediatrics 48:237–247

    Article  CAS  PubMed  Google Scholar 

  • Hsu P, Ma A, Wilson M, Williams G, Curotta J, Munns CF, Mehr S (2014) CHARGE syndrome: a review. J Pediatr Child Health 50:504–511

    Article  Google Scholar 

  • Hu D, Helms JA (1999) The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126:4873–4884

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Young NM, Li X, Xu Y, Hallgrimsson B, Mercurio RS (2015) A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 142:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Rajagopal R, Liu Y, Dattilo LK, Shaham O, Ashery-Padan R, Beebe DC (2011) The mechanisms of lens placode formation: a case of matrix-mediated morphogenesis. Dev Biol 355:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D et al (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353:861–864

    Article  CAS  PubMed  Google Scholar 

  • Iseki S, Wilkie AOM, Morriss-Kay GM (1999) FGFR1 and FGFR2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 126:5611–5620

    Article  CAS  PubMed  Google Scholar 

  • Jabs EW (2002) Genetic etiologies of craniosynostosis. In: Mooney MP, Siegel MI (eds) Understanding craniofacial anomalies: the etiopathogenesis of craniosynostoses and facial clefting. Wiley-Liss, New York, pp 125–146

    Chapter  Google Scholar 

  • Jabs EW, Muller U, Li X, Ma L, Luo W, Haworth IS et al (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450

    Article  CAS  PubMed  Google Scholar 

  • Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M et al (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Jacobson C, Granström G (1997) Clinical appearance of spontaneous and induced first and second branchial arch syndromes. Scand J Plast Reconstr Hand Surg 31:125–136

    Article  Google Scholar 

  • Jasrapuria-Agrawal S, Lwigale PY (2014) Neural crest cells in ocular development. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 189–203

    Chapter  Google Scholar 

  • Jeanty P, Zaleski W, Fleischer AC (1991) Prenatal sonographic diagnosis of lipoma of the corpus callosum in a fetus with Goldenhar syndrome. Am J Perinatol 8:89–90

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K, Gross H, Kaltenbäck E, Grisold W (1981) Holoprosencephaly and agenesis of the corpus callosum: frequency of associated malformations. Acta Neuropathol (Berl) 55:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF et al (2007) RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80:1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M, Yocum et al (2008) Regulation of a remote Sonic hedgehog forebrain enhancer by the Six3 homeoprotein. Nat Genet 40:1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T (1998) The slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198:277–285

    Article  CAS  PubMed  Google Scholar 

  • Jirásek JE (2001) An atlas of the human embryo and fetus. Parthenon, New York

    Google Scholar 

  • John N, Cinelli P, Wegner M, Sommer L (2011) Transforming growth factor-β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 29:689–699

    Article  CAS  PubMed  Google Scholar 

  • Johnson Chacko L, Sergi C, Dudas J, Fischer N, Rask-Andersen H, Schrott-Fischer A, Handschuh S (2019) Growth and cellular patterning during fetal human inner ear development studied by a correlative imaging approach. BMC Dev Biol 19:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Iseki I, Wilkie AOM, Morriss-Kay GM (2000) Expression patterns of TWIST and FGFR1-2 and -3 in the developing mouse coronal suture suggest a key role for TWIST in suture initiation and biogenesis. Mech Dev 91:341–345

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Moonis G, Green GE, Carmody R, Burbank HN (2011a) Syndromes of the first and second branchial arches, Part 1: Embryology and characteristic defects. AJNR Am J Neuroradiol 32:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JM, Moonis G, Green GE, Carmody R, Burbank HN (2011b) Syndromes of the first and second branchial arches, Part 2: Syndromes. AJNR Am J Neuroradiol 32:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston MC, Bronsky PT (1995) Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit Rev Oral Biol Med 6:368–422

    Article  CAS  PubMed  Google Scholar 

  • Johnston MC, Bronsky PT (2002) Craniofacial embryogenesis: abnormal developmental mechanisms. In: Mooney MP, Siegel MI (eds) Understanding craniofacial anomalies: the etiopathogenesis of craniosynostoses and facial clefting. Wiley-Liss, New York, pp 61–124

    Chapter  Google Scholar 

  • Jones MC (1990) The neurocristopathies: reinterpretation based upon the mechanism of abnormal morphogenesis. Cleft Palat J 27:136–140

    CAS  Google Scholar 

  • Jones KL (1997) Smith’s recognizable patterns of human malformation, 5th edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP et al (2008) Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 14:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L et al (2006) CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 43:306–314

    Article  CAS  PubMed  Google Scholar 

  • Jugessur A, Farlie PG, Kilpatrick N (2009) The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral Dis 15:437–453

    Article  CAS  PubMed  Google Scholar 

  • Juriloff DM, Sulik KK, Roderick TH, Hogan BK (1985) Genetic and developmental studies of a new mouse mutation that produces otocephaly. J Craniofac Genet Dev Biol 5:121–145

    CAS  PubMed  Google Scholar 

  • Kakar N, Ahmad J, Morris-Rosendahl DJ, Altmüller J, Friedrich K, Barbi G et al (2015) STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly. Hum Genet 134:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kalatzis V, Sakly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: towards the understanding of the Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 213:486–499

    Article  CAS  PubMed  Google Scholar 

  • Kanagasuntheram R (1967) A note on the development of the tubotympanic recess in the human embryo. J Anat (Lond) 101:731–741

    CAS  Google Scholar 

  • Kang S, Graham JM, Haskins-Olney A, Biesecker LG (1997) Gli3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 15:266–268

    Article  CAS  PubMed  Google Scholar 

  • Kang IN, Musa M, Harum F, Junit SM (2010) Characterization of mutations in the FOXE1 gene in a cohort of unrelated Malaysian patients with congenital hypothyroidism and thyroid dysgenesis. Biochem Genet 48:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kanzler B, Kuschert SJ, Liu YH, Mallo M (1998) Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125:2587–2597

    Article  CAS  PubMed  Google Scholar 

  • Kayserili H, Uz E, Niessen C, Vargel I, Alanay Y, Tuncbilek G et al (2009) ALX4 dysfunction disrupts craniofacial and epidermal development. Hum Mol Genet 18:4357–4366

    Article  CAS  PubMed  Google Scholar 

  • Kayserili H, Altunoglu U, Ozgur H, Basaran S, Uyguner ZO (2012) Mild nasal malformations and parietal foramina caused by homozygous ALX4 mutations. Am J Med Genet A 158A:236–244

    Article  PubMed  Google Scholar 

  • Kelbermann D, Tyson J, McInemey AM, Malcolm S, Winter RM, Bitner-Glindricz M (2000) Mapping of a locus for autosomal dominant hemifacial microsomia. J Med Genet 37(Suppl 1):S76

    Google Scholar 

  • Kelley RI, Hennekam RCM (2001) Smith-Lemli-Opitz syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6183–6201

    Google Scholar 

  • Kelley RI, Roessler E, Hennekam RCM, Feldman GL, Kosaki K, Jones MC et al (1996) Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 66:478–484

    Article  CAS  PubMed  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Huygen PLM, Joosten FBM, Cremers CWRJ (2001) Progressive, fluctuant hearing loss, an enlarged vestibular aqueduct and cochlear hypoplasia in the BOR syndrome. Otol Neurotol 22:637–643

    Article  CAS  PubMed  Google Scholar 

  • Kemperman MH, Stinckens C, Kumar S, Joosten FBM, Huygen PLM, Cremers CWRJ (2002a) The branchio-oto-renal syndrome. Adv Oto-Rhino-Laryngol 61:192–200

    Article  CAS  Google Scholar 

  • Kemperman MH, Koch SMP, Joosten FBM, Kumar S, Huygen PLM, Cremers CWRJ (2002b) Inner ear anomalies are frequent but non-obligatory features of the branchio-oto-renal syndrome. Arch Otolaryngol Head Neck Surg 128:1033–1038

    Article  PubMed  Google Scholar 

  • Kido Y, Gordon CT, Sakazume S, Ben Bdira E, Dattani M, Wilson LC et al (2013) Further characterization of atypical features in auriculocondylar syndrome caused by recessive PLCB4 mutations. Am J Med Genet A 161A:2339–2346

    Article  PubMed  Google Scholar 

  • Kim A, Savary C, Dubourg C, Carrć W, Mouden C, Hamdi-Rozt H et al (2019) Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain 142:35–49

    Article  PubMed  Google Scholar 

  • Kimura C, Takeda N, Suzuki M, Oshimura M, Aizawa S, Matsuo I (1997) Cis-acting elements conserved between mouse and pufferfish Otx2 genes govern the expression in mesencephalic neural crest cells. Development 124:3929–3941

    Article  CAS  PubMed  Google Scholar 

  • Kirby ML (1987) Cardiac morphogenesis: recent research advances. Pediatr Res 21:219–224

    Article  CAS  PubMed  Google Scholar 

  • Kirby ML, Waldo KL (1990) Role of neural crest in congenital heart disease. Circulation 82:332–340

    Article  CAS  PubMed  Google Scholar 

  • Kjaer I, Keeling JW, Fischer-Hansen B (1999) The prenatal human cranium – normal and pathologic development. Munksgaard, Copenhagen

    Google Scholar 

  • Kleinhaus S, Boley SJ, Sheran M, Sieber WK (1979) Hirschsprung’s disease. A survey of the members of the Academy of Pediatrics. J Pediatr Surg 14:588–597

    Article  CAS  PubMed  Google Scholar 

  • Kleinsasser O, Schlothane R (1964) Die Ohrenbildung im Rahmen der Thalidomide-Embryopathie. Z Laryngol Rhinol Otol 43:344–367

    CAS  PubMed  Google Scholar 

  • Klingbeil KD, Greenland CM, Arslan S, Llamos Paneque A, Gurkan H, Demir Ulusal S et al (2017) Novel EYA1 variants causing branchio-oto-renal syndrome. Int J Pediatr Otolaryngol 98:59–63

    Article  Google Scholar 

  • Knecht AK, Bronner-Fraser M (2002) Induction of the neural crest: a multigenic process. Nat Rev Genet 3:453–461

    Article  CAS  PubMed  Google Scholar 

  • Knisely AS, Ambler MW (1988) Temporal-lobe abnormalities in thanatophoric dysplasia. Pediatr Neurosci 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Kokitsu-Nakata NM, Zechi-Ceide RM, Vendramini-Pittoli S, Romanelli Tavares VI, Passos-Bueno MR, Guion-Almeida MI (2012) Auriculo-condylar syndrome: confronting a diagnostic challenge. Am J Med Genet A 158A:59–65

    Article  PubMed  Google Scholar 

  • Komatsu Y, Yu P, Kamiya N, Pan H, Fukuda T, Scott GJ et al (2013) Augmentation of Smad-dependent BMP signaling in neural crest cells causes craniosynostosis in mice. J Bone Miner Res 28:1422–1433

    Article  CAS  PubMed  Google Scholar 

  • Kreiborg S (1981) Crouzon syndrome. A clinical and roentgencephalometric study. Scand J Plast Reconstr Surg 18(Suppl):1–198

    CAS  Google Scholar 

  • Kress W, Schropp C, Lieb G, Petersen B, Busse-Ratzka M, Kunz J et al (2006) Saethre-Chotzen syndrome caused by TWIST1 gene mutations: functional differentiation from Muenke coronal synostosis syndrome. Eur J Hum Genet 14:39–48

    Article  CAS  PubMed  Google Scholar 

  • Krug P, Moriniere V, Marlin S, Koubi V, Gabriel HD, Colin E et al (2011) Mutations screening of the EYA1, SIX1 and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenetic role of SIX5 mutations. Hum Mutat 32:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kruszka P, Martinez AF, Muenke M (2018) Molecular testing in holoprosencephaly. Am J Med Genet C Semin Med Genet 178:187–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota Y, Ito K (2000) Chemotactic migration of mesencephalic neural crest cells in the mouse. Dev Dyn 217:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kulesa PM, Fraser SE (1998) Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev Biol 204:327–344

    Article  CAS  PubMed  Google Scholar 

  • Kulesa PM, Fraser SE (2000) In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127:2843–2852

    Article  CAS  PubMed  Google Scholar 

  • Kulesa PM, Ellias DL, Trainor PA (2004) Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 229:14–29

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka H, Iulianella A, Williams T, Trainor PA (2014) Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest 124:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaka H, Wang Q, Sandell LL, Yamashiro T, Trainor PA (2017) Rdh10 loss-of-function and perturbed retinoid signalling underlies the etiology of choanal atresia. Hum Mol Genet 26:1268–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaka H, Mushiake J, Mithun S, Wu Y, Wang Q, Kikuchi M et al (2021) Synergistic role of retinoic acid signaling and Gata3 during primitive choanae formation. Hum Mol Genet 30:2383–2392

    Article  CAS  PubMed  Google Scholar 

  • Kurtz AB, Wapner RJ, Rubin CS, Cole-Beuglet C, Ross D, Goldberg BB (1980) Ultrasound criteria for in utero diagnosis of microcephaly. J Clin Ultrasound 8:11–16

    Article  CAS  PubMed  Google Scholar 

  • LaBonne C, Bronner-Fraser M (1999) Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81–112

    Article  CAS  PubMed  Google Scholar 

  • LaBonne C, Bronner-Fraser M (2000) Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol 221:195–205

    Article  CAS  PubMed  Google Scholar 

  • Ladher RK (2017) Changing shape and shaping change: inducing the inner ear. Semin Cell Dev Biol 65:3–46

    Article  Google Scholar 

  • Ladher RK, Wright TJ, Moon AM, Mansour SL, Schoenwolf GC (2005) FGF8 initiates inner ear induction in chick and mouse. Genes Dev 19:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammer EJ, Opitz JM (1986) The DiGeorge anomaly as a developmental field defect. Am J Med Genet Suppl 2:113–127

    Article  CAS  PubMed  Google Scholar 

  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841

    Article  CAS  PubMed  Google Scholar 

  • Laue K, Pogoda H-M, Daniel PB, van Haeringen A, Alanay Y, von Ameln S et al (2011) Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douarin NM (1969) Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme ‘marquage biologique’ dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ontogenèse. Bull Biol Fr Belg 103:435–452

    PubMed  Google Scholar 

  • Le Douarin NM (1973) A Feulgen-positive nucleolus. Exp Cell Res 77:459–468

    Article  PubMed  Google Scholar 

  • Le Douarin NM (2004) The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev 121:1089–1102

    Article  PubMed  Google Scholar 

  • Le Douarin NM, Dupin E (2012) The neural crest in vertebrate evolution. Curr Opin Genet Dev 22:381–389

    Article  PubMed  Google Scholar 

  • Le Douarin NM, Dupin E (2014) The neural crest, a fourth germ layer of the vertebrate embryo: significance in chordate evolution. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 3–26

    Chapter  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Le Douarin NM, Teillet M-A (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:1–48

    Google Scholar 

  • Le Douarin NM, Couly G, Creuzet SE (2012) The neural crest is a powerful regulator of pre-otic brain development. Dev Biol 366:74–82

    Article  PubMed  Google Scholar 

  • Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  • Lee S-H, Bédard O, Buchtová M, Fu K, Richman JM (2004) A new origin for the maxillary jaw. Dev Biol 276:207–224

    Article  CAS  PubMed  Google Scholar 

  • Lee LMY, Leung C-Y, Tan WWC, Choi H-L, Leung Y-C, McCaffery PJ et al (2012) A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109:13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemire RJ, Cohen MM Jr, Beckwith JB, Kokich VG, Siebert JR (1981) The facial features of holoprosencephaly in anencephalic human specimens. I. Historical review and associated malformations. Teratology 23:297–303

    Article  CAS  PubMed  Google Scholar 

  • Leoni C, Gordon CT, Marca GD, Giorgio V, Onesimo R, Perrino F et al (2016) Respiratory and gastrointestinal dysfunction associated with auriculo-condylar syndrome and homozygous PLCB4-loss-of-function mutation. Am J Med Genet 170A:1471–1478

    Article  Google Scholar 

  • Leussink B, Brouwer A, El Khattabi M, Poelmann RE, Gittenberger-de Groot AC, Meijlink F (1995) Expression patterns of the paired-related homeobox genes MHox/Prx1 and S8/Prx2 suggest roles in development of the heart and the forebrain. Mech Dev 52:51–64

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EA (2001) Chromosomal microdeletions: dissecting del22q11 syndrome. Nat Rev Genet 2:858–868

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EA, Baldini A (2001) Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region. Hum Mol Genet 10:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EA, Botta A, Jurcic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM et al (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EA, Vitelli F, Su H, Morishima M, Huyuh T, Pramparo T et al (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  CAS  PubMed  Google Scholar 

  • Linker C, Bronner-Fraser M, Mayor R (2000) Relationship between gene expression domains of Xsnail, Xslug and Xtwist and cell movement in the prospective neural crest of Xenopus. Dev Biol 224:215–225

    Article  CAS  PubMed  Google Scholar 

  • Lipton JM, Ellis SR (2009) Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am 23:261–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YH, Kundu R, Wu L, Luo W, Ignelzi MA, Snead ML, Maxson RE (1995) Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci U S A 92:6137–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yang ML, Li ZJ, Bax XF, Wang XK, Lu L et al (2007) A simple and precise classification for cleft lip and palate: a five-digit numerical recording system. Cleft Palate Craniofac J 44:465–468

    Article  PubMed  Google Scholar 

  • Liu Q, Spusta SC, Mi R, Lassiter RNT, Stark MR, Höke A et al (2012) Human neural crest cells derived from human ESCs and induces pluripotent stem cells: induction, maintenance and differentiation into functional Schwann cells. Stem Cells Transl Med 1:266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lleras-Forero L, Streit A (2012) Development of the sensory nervous system in the vertebrate head: the importance of time. Curr Opin Genet Dev 22:315–322

    Article  CAS  PubMed  Google Scholar 

  • Lo H-F, Hong M, Krauss RS (2021) Concept of multifactorial etiology of developmental disorders: gene-gene and gene-environmental interactions in holoprosencephaly. Front Cell Dev Biol 9:795194

    Article  PubMed  PubMed Central  Google Scholar 

  • Locascio A, Nieto MA (2001) Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. Curr Opin Genet Dev 11:464–469

    Article  CAS  PubMed  Google Scholar 

  • Luijsterberg AJM, Vermeij-Keers C (2011) Ten years recording common oral clefts with a new descriptive system. Cleft Palate Craniofac J 48:173–182

    Article  Google Scholar 

  • Luijsterberg AJ, Rozendaal AM, Vermeij-Keers C (2014) Classifying common oral clefts: a new approach after descriptive registration. Cleft Palate Craniofac J 51:381–391

    Article  Google Scholar 

  • Lumsden A, Guthrie S (1991) Alternating patterns of cell surface properties and neural crest cell migration during segmentation of the chick embryo. Development 2(Suppl):9–15

    Article  Google Scholar 

  • Maarse W, Rozendaal AM, Pajkrt E, Vermeij-Keers C, Mink van der Molen AB, Van den Boogaard MJ (2012) A systematic review of associated structural and chromosomal defects in oral clefts: when is prenatal genetic analysis indicated? J Med Genet 49:490–498

    Article  PubMed  Google Scholar 

  • Macca M, Franco B (2006) The molecular basis of oral-facial-digital syndrome, type 1. Am J Med Genet C 151C:318–325

    Article  Google Scholar 

  • Malic CC, Lam M, Donelle J, Richard L, Vigod SN, Benchimol EI (2020) Incidence, risk factors, and normality associated with orofacial cleft among children in Ontario, Canada. JAMA Netw Open 3:e1921036

    Article  PubMed  Google Scholar 

  • Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2004) Retinoic acid signalling in the development of branchial arches. Curr Opin Genet Dev 14:591–598

    Article  CAS  PubMed  Google Scholar 

  • Marres HAM, Cremers CWRJ, Dixon MJ, Huygen PLM, Joosten FBM (1995) The Treacher Collins syndrome: a clinical, radiological and genetic linkage study of two pedigrees. Arch Otolaryngol Head Neck Surg 121:509–514

    Article  CAS  PubMed  Google Scholar 

  • Marsh KL, Dixon MJ (2001) Treacher Collins syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6147–6152

    Google Scholar 

  • Marucci DD, Dunaway DJ, Jones BM, Hayward RD (2008) Raised intracranial pressure in Apert syndrome. Plast Reconstr Surg 122:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Mathijssen IMJ, Working Group Guideline Craniosynostosis (2021) Updated guideline on treatment and management of craniosynostosis. J Craniofac Surg 32:371–450

    Article  PubMed  Google Scholar 

  • Mathijssen IMJ, Vaandrager JM, Van der Meulen JC, Pieterman H, Sonneveld JW, Kreiborg S, Vermeij-Keers C (1996) The role of bone centers in the pathogenesis of craniosynostosis: an embryologic approach using CT measurements in isolated craniosynostosis and Apert and Crouzon syndromes. Plast Reconstr Surg 98:17–26

    Article  CAS  PubMed  Google Scholar 

  • Mathijssen IMJ, Van Splunder J, Vermeij-Keers C, Pieterman H, De Jong THR, Mooney MP, Vaandrager JM (1999) Tracing craniosynostosis to its developmental stage through bone center displacement. J Craniofac Genet Dev Biol 19:57–63

    CAS  PubMed  Google Scholar 

  • Matsunaga E, Shiota K (1977) Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 16:261–272

    Article  CAS  PubMed  Google Scholar 

  • Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9:2646–2658

    Article  CAS  PubMed  Google Scholar 

  • Mavrogiannis LA, Antonopoulou I, Baxova A, Kutilek S, Kim CA, Sugayama SM et al (2001) Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nat Genet 27:17–18

    Article  CAS  PubMed  Google Scholar 

  • Mayor R, Theveneau E (2013) The neural crest. Development 140:2247–2251

    Article  CAS  PubMed  Google Scholar 

  • Mayor R, Theveneau E (2014) The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 457:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mayor R, Morgan R, Sargent MG (1995) Induction of the prospective neural crest of Xenopus. Development 121:767–777

    Article  CAS  PubMed  Google Scholar 

  • McBride WA, McIntyre GT, Carroll K, Mossey PA (2016) Subphenotyping and classification of orofacial clefts: need for orofacial cleft subphenotyping calls for revised classification. Cleft Palate Craniofac J 53:539–549

    Article  CAS  PubMed  Google Scholar 

  • McDonald-McGinn DM, Feret H, Nah HD, Bartlett SP, Whitaker LA, Zacka EH (2010) Metopic craniosynostosis due to mutations in Gli3: a novel association. Am J Med Genet A 152A:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vortsman JA et al (2015) 22q11.2 Deletion syndrome. Nat Rev Dis Prim 1:15071

    Article  PubMed  Google Scholar 

  • McGonnell IM, Graham A (2002) Trunk neural crest has skeletogenic potential. Curr Biol 12:767–771

    Article  CAS  PubMed  Google Scholar 

  • Meijlink F, Beverdam A, Brouwer A, Oosterveen TC, ten Berge D (1997) Vertebrate aristaless-related genes. Int J Dev Biol 43:651–663

    Google Scholar 

  • Menezes AH, VanGilder JC, Graf CJ, McDonnell DE (1980) Craniocervical abnormalities: a comprehensive surgical approach. J Neurosurg 53:444–455

    Article  CAS  PubMed  Google Scholar 

  • Mercier S, Dubourg C, Garcelon N, Campillo-Gimenez B, Gicquel I, Bellegule M et al (2011) New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases. J Med Genet 48:752–760

    Article  CAS  PubMed  Google Scholar 

  • Mérida-Velasco JA, Sánchez-Montesinos I, Espín-Ferra J, García-García JD, Roldan-Schilling V (1993) Developmental differences in the ossification process of the human corpus and ramus mandibulae. Anat Rec 235:319–324

    Article  PubMed  Google Scholar 

  • Meyers GA, Orlow SJ, Munro IR, Przylepa PA, Wang Jabs E (1995) Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 11:462–464

    Article  CAS  PubMed  Google Scholar 

  • Miesfeld JB, Brown NL (2019) Eye organogenesis: a hierarchical view of ocular development. Curr Top Dev Biol 132:351–393

    Article  PubMed  Google Scholar 

  • Milunsky JM, Maher TM, Zhao G, Wang Z, Mulliken JB, Chitayat D et al (2011) Genotype-phenotype analysis of the branchio-oculo-facial syndrome. Am J Med Genet A 155:22–32

    Article  Google Scholar 

  • Ming JE, Muenke M (1998) Holoprosencephaly: from Homer to hedgehog. Clin Genet 53:155–163

    Article  CAS  PubMed  Google Scholar 

  • Ming JE, Muenke M (2002) Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 71:1017–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M et al (2002) Mutations in PATCHED-1, the receptor of SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301

    Article  CAS  PubMed  Google Scholar 

  • Mink van der Molen AB, Van Breugel JMM, Janssen NG, Admiraal RJC, van Adrichem LNA, Bierenbroodspot F et al (2021) Clinical practice guidelines on the treatment of patients with cleft palate, alveolus, and palate: an executive summary. J Clin Med 10:4813

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH et al (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124:113–123

    Article  CAS  PubMed  Google Scholar 

  • Moody SA, LaMantia AS (2015) Transcriptional regulation of cranial placode development. Curr Top Dev Biol 111:301–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B (2003) Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A 100:9360–9365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morriss-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131

    Article  CAS  PubMed  Google Scholar 

  • Morriss-Kay GM, Wilkie AOM (2005) Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat (Lond) 207:637–653

    Article  Google Scholar 

  • Morriss-Kay GM, Ruberte E, Fukiishi Y (1993) Mammalian neural crest and neural crest derivatives. Ann Anat 175:501–507

    Article  CAS  PubMed  Google Scholar 

  • Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC (2009) Cleft lip and palate. Lancet 347:1773–1785

    Article  Google Scholar 

  • Mouden C, de Tayrac M, Dubourg C, Rose S, Carré W, Hamdi-Rozé H et al (2015) Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings. PLoS One 10:e0117418

    Article  PubMed  PubMed Central  Google Scholar 

  • Mowat DR, Croaker GD, Cass DT, Kerr BA, Chaitow J, Ades LC et al (1998) Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22-q23. J Med Genet 35:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowat DR, Wilson MJ, Goossens M (2003) Mowat-Wilson syndrome. J Med Genet 40:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muenke M, Beachy PA (2001) Holoprosencephaly. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6203–6230

    Google Scholar 

  • Muenke M, Wilkie AOM (2001) Craniosynostosis syndromes. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6117–6146

    Google Scholar 

  • Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A et al (1994) A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 8:269–274

    Article  CAS  PubMed  Google Scholar 

  • Muenke M, Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, Barlett SP et al (1997) A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet 60:555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller F, O’Rahilly R (1980) The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat 159:33–58

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol (Berl) 168:419–432

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol (Berl) 172:157–169

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1986) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol (Berl) 175:205–222

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl) 177:203–224

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl) 177:495–511

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1989) Mediobasal prosencephalic defects, including holoprosencephaly and cyclopia, in relation to the development of the human forebrain. Am J Anat 185:391–414

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1994) Occipitocervical segmentation in staged human embryos. J Anat (Lond) 185:251–258

    Google Scholar 

  • Nagai T, Aruga J, Takada S, Günther T, Spörle R, Shughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 genes suggests an essential role for Zic genes in body pattern formations. Dev Biol 182:299–313

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A 97:1618–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 201:455–466

    Article  CAS  PubMed  Google Scholar 

  • Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, de Die-Smulders C et al (1999) The mutational spectrum of the Sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Nanni L, Croen LA, Lammer EJ, Muenke M (2000) Holoprosencephaly: molecular study of a Californian population. Am J Med Genet 90:315–319

    Article  CAS  PubMed  Google Scholar 

  • Naora H, Kimura M, Otani H, Yokoyama M, Koizumi I, Katiuki M, Tanaka O (1994) Transgenic mouse model of hemifacial microsomia: cloning and characterization of insertional mutation region on chromosome 10. Genomics 23:515–519

    Article  CAS  PubMed  Google Scholar 

  • Narle A, Ebert BL (2010) Ribosomopathies: human disorders of ribosome dysfunction. Blood 115:3196–3205

    Article  Google Scholar 

  • Nelson FN, Hecht JT, Horton WA, Butler IJ, Goldie WD, Miner M (1988) Neurological basis of respiratory complications in achondroplasia. Ann Neurol 24:89–93

    Article  CAS  PubMed  Google Scholar 

  • Newgeen DF, Scheel M, Kaster V (1986) Morphogenesis of sclerotome and neural crest cells in avian embryos: in vivo and in vitro studies on the role of notochordal extracellular material. Cell Tissue Res 244:299–313

    Google Scholar 

  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM et al (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P, Dollé P (2003) The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of the posterior pharyngeal arches and the enteric nervous system. Development 130:2525–2534

    Article  CAS  PubMed  Google Scholar 

  • Niederrreither K, Dollé P (2008) Retinoic acid development: towards an integrated view. Nat Rev Genet 9:541–543

    Article  Google Scholar 

  • Nieminen P, Morgan NV, Fenwick AL, Parmanen S, Veistinen L, Mikkola ML et al (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 89:67–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994) Control of cell behavior during vertebrate development by slug, a zinc finger gene. Science 264:835–839

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou E, Galea GL, Roio A, Greene NDE, Copp AJ (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144:552–566

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y (1993) Embryological study of nasal cavity development in human embryos with reference to congenital nostril atresia. Acta Anat (Basel) 147:140–144

    Article  CAS  PubMed  Google Scholar 

  • Noack Watt KE, Trainor PA (2014) Neurocristopathies: the etiology and pathogenesis of disorders arising from defects in neural crest cell development. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 361–394

    Chapter  Google Scholar 

  • Noack Watt KE, Achilleos A, Neben C, Merrill AM, Trainor PA (2016) The role of RNA polymerase 1 subunits Polr1c and Polr1d in craniofacial development and the pathogenesis of Treacher Collins syndrome. PLoS Genet 12:e1006187

    Article  PubMed  PubMed Central  Google Scholar 

  • Noden DM (1978a) The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 67:296–312

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1978b) The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues. Dev Biol 67:313–329

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1983a) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1983b) The embryonic origins of avian craniofacial muscles and associated connective tissues. Am J Anat 186:257–276

    Article  Google Scholar 

  • Noden DM (1991a) Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11:192–213

    CAS  PubMed  Google Scholar 

  • Noden DM (1991b) Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome. Brain Behav Evol 38:190–225

    Article  CAS  PubMed  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat (Lond) 207:575–601

    Article  Google Scholar 

  • Nonchev S, Maconochie M, Vesque C, Aparicio S, Ariza-McNaughton L, Manzanares M et al (1996a) The conserved role Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci U S A 93:9339–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonchev S, Vesque C, Maconochie M, Seitanidou T, Ariza-McNaughton L et al (1996b) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122:543–554

    Article  CAS  PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt PJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Norris EH (1937) The parathyroid glands and lateral thyroid in man: their morphogenesis, histogenesis, topographic anatomy and prenatal growth. Contrib Embryol Carnegie Inst 26:247–294

    Google Scholar 

  • Norris EH (1938) The morphogenesis and histogenesis of the thymus gland in man: in which the origin of Hassall’s corpuscle of the human thymus is discovered. Contrib Embryol Carnegie Inst 27:191–207

    Google Scholar 

  • O’Gorman S (2005) Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev Dyn 234:124–131

    Article  PubMed  Google Scholar 

  • O’Leary DDM, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73

    Article  PubMed  Google Scholar 

  • O’Rahilly R (1966) The early development of the eye in staged human embryos. Contrib Embryol Carnegie Inst 38:1–42

    Google Scholar 

  • O’Rahilly R (1973) Developmental stages in human embryos. Part A: Embryos of the first three weeks (stages 1 to 9). Carnegie Institution of Washington Publication 631, Washington, DC

    Google Scholar 

  • O’Rahilly R (1983) The timing and sequence of events in the development of the human eye and ear. Anat Embryol (Berl) 168:87–99

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Gardner E (1971) The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z Anat Entw Gesch 134:1–12

    Article  Google Scholar 

  • O’Rahilly R, Müller F (1981) The first appearance of the human nervous system at stage 8. Anat Embryol (Berl) 163:1–13

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human embryology & teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F (2007) The development of the neural crest in the human. J Anat (Lond) 211:335–351

    Article  Google Scholar 

  • Ongkosuwito EM, van Vooren J, van Neck JW, Wattel E, Wolvius EB, van Adrichem LN, Kuijpers-Jagtman AM (2013a) Changes of mandibular ramal height, during growth in unilateral hemifacial microsomia patients and unaffected controls. J Craniomaxillofac Surg 41:92–97

    Article  CAS  PubMed  Google Scholar 

  • Ongkosuwito EM, van Neck JW, Wattel E, van Adrichem LN, Kuijpers-Jagtman AM (2013b) Craniofacial morphology in unilateral hemifacial microsomia. Br J Oral Maxillofac Surg 51:902–907

    Article  CAS  PubMed  Google Scholar 

  • Oostrom CAM, Vermeij-Keers C, Gilbert PM, van der Meulen JC (1996) Median cleft of the lower lip and mandible: case reports, a new embryological hypothesis and subdivision. Plast Reconstr Surg 97:313–319

    Article  CAS  PubMed  Google Scholar 

  • Opperman LA (2000) Cranial sutures as intramembranous growth sites. Dev Dyn 219:472–485

    Article  CAS  PubMed  Google Scholar 

  • Osumi-Yamashita N, Iseki S, Noji S, Nohno T, Koyama E, Taniguchi S et al (1992) Retinoic acid treatment induces the ectopic expression of retinoic acid receptor β gene and excessive cell death in the embryonic mouse face. Dev Growth Diff 34:199–209

    Article  CAS  Google Scholar 

  • Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K (1994) The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 164:409–419

    Article  CAS  PubMed  Google Scholar 

  • Pane M, Baranello G, Battaglia D, Donvito V, Carnevale F, Stefanini MC et al (2004) Severe abnormalities of the pons in two infants with Goldenhar syndrome. Neuropediatrics 35:234–238

    Article  CAS  PubMed  Google Scholar 

  • Parada C, Chai Y, Sharpe P (2014) Functional significance of cranial neural crest cells during tooth development and regeneration. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 423–439

    Chapter  Google Scholar 

  • Park WJ, Theda C, Maestri NE, Meyers GA, Fryburg JS, Dufresne C, Cohen MM Jr, Jabs EW (1995) Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 57:321–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H (1999) Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mut 14:115–125

    Article  CAS  PubMed  Google Scholar 

  • Passos-Bueno MR, Ornelas CC, Fanganiello RD (2009) Syndromes of the first and second pharyngeal arches: a review. Am J Med Genet A 149A:1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Pauli RM, Pettersen JC, Arya S, Gilbert EF (1983) Familial agnathia-holoprosencephaly. Am J Med Genet 14:677–698

    Article  CAS  PubMed  Google Scholar 

  • Petit E, Escande F, Jourdain AS, Porchet N, Amiel J, Doray B et al (2014) Nager syndrome: confirmation of SF3B4 haploinsufficiency as the major cause. Clin Genet 86:246–251

    Article  CAS  PubMed  Google Scholar 

  • Petryk A, Graf D, Marcucio R (2015) Holoprosencephaly: signalling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol 4:17–32

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer RA (1964) Dominant erbliche Akrocephalosyndactylie. Z Kinderheilk 90:310–320

    Article  Google Scholar 

  • Phelps PD, Poswillo D, Lloyd GAS (1981) The ear deformities in mandibulofacial synostosis. Clin Otolaryngol 6:15–28

    Article  CAS  PubMed  Google Scholar 

  • Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N (2010) Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31:391–406

    Article  CAS  PubMed  Google Scholar 

  • Pitirri MK, Kawasaki K, Richtmeier JT (2020) It takes two: building the vertebrate skull from chondrocranium and dermatocranium. Vertebr Zool 70:587–600

    PubMed  PubMed Central  Google Scholar 

  • Poelmann RE, Dubois SV, Hermsen C, Smits-van Prooije AE, Vermeij-Keers C (1985) Cell degeneration and mitosis in the buccopharyngeal and branchial membranes in the mouse embryo. Anat Embryol (Berl) 171:187–192

    Article  CAS  PubMed  Google Scholar 

  • Politzer G (1952) Zur normalen und abnormen Entwicklung des menschlichen Gesichtes. Z Anat Entw Gesch 116:332–347

    Article  Google Scholar 

  • Pooh RK (2009) Neuroscan of congenital brain abnormality. In: Pooh RK, Kurjak A (eds) Fetal neurology. Jaypee Brothers Medical Publishers, New Delhi

    Google Scholar 

  • Poswillo D (1973) The pathogenesis of the first and second branchial arch syndrome. Oral Surg 35:302–328

    Article  CAS  PubMed  Google Scholar 

  • Poswillo D (1975) The pathogenesis of the Treacher Collins syndrome (mandibulofacial dysostosis). Br J Oral Surg 13:1–26

    Article  CAS  PubMed  Google Scholar 

  • Pratt RM, Goulding EH, Abbott BD (1987) Retinoic acid inhibits migration of cranial neural crest cells in the cultured mouse embryo. J Craniofac Genet Dev Biol 7:205–217

    CAS  PubMed  Google Scholar 

  • Przylepa KA, Paznekas W, Zhang M, Golabi M, Bias W, Bamshad MJ et al (1996) Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrate syndrome. Nat Genet 13:492–494

    Article  CAS  PubMed  Google Scholar 

  • Purnell CA, Jones LE, Klosowiak JL, Gosain AK (2019) Mandibular catch-up growth in Pierre Robin sequence: a systematic review. Cleft Palate Craniofac J 56:168–176

    Article  PubMed  Google Scholar 

  • Qu S, Niswender KD, Ji QS, van der Meer R, Keeney D, Magnuson MA, Wisdom R (1997) Polydactyly and ectopic ZPA formation in Alx-4 mutant mice. Development 124:3999–4008

    Article  CAS  PubMed  Google Scholar 

  • Rainger J, Bengani H, Campbell L, Anderson E, Sokhi K, Lam W et al (2012) Miller (Geneé-Wiedemann) syndrome represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Hum Mol Genet 21:3969–3983

    Article  CAS  PubMed  Google Scholar 

  • Rannan-Eliya SV, Taylor IB, de Heer IM, van den Ouweland AMW, Wall SA, Wiklie AOM (2004) Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet 115:200–207

    Article  CAS  PubMed  Google Scholar 

  • Read AP (2001) Waardenburg syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York, pp 6097–6116

    Google Scholar 

  • Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S (1994) Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet 8:98–103

    Article  CAS  PubMed  Google Scholar 

  • Reid CS, Pyeritz RE, Kopits SE, Maria BL, Wang H, McPherson RW et al (1987) Cervicomedullary compression in young patients with achondroplasia: value of comprehensive neurologic and respiratory evaluation. J Pediatr 110:522–530

    Article  CAS  PubMed  Google Scholar 

  • Reijnders MRF, Miller KA, Alvi M, Goos JAC, Lees MM, de Burca A et al (2018) De novo and inherited loss-of-function variants in TLK2: clinical and genotype-phenotype evaluation of a distinct neurodevelopmental disorder. Am J Hum Genet 102:1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139:843–858

    Article  CAS  PubMed  Google Scholar 

  • Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L et al (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855

    Article  CAS  PubMed  Google Scholar 

  • Richman JM, Crosby Z (1990) Differential growth of facial primordia in chick embryos: responses of facial mesenchyme to basic fibroblast growth factor (bFGF) and serum in micromass culture. Development 109:341–348

    Article  CAS  PubMed  Google Scholar 

  • Rijken B, Lequin MH, De Rooi JJ, Van Veelen MLC, Mathijssen IMJ (2013) Foramen magnum size and involvement of its intra-occipital synchondroses in Crouzon syndrome. Plast Reconstr Surg 132:993e–1000e

    Article  CAS  PubMed  Google Scholar 

  • Rijli FM, Mark M, Lakharaju S, Dierich A, Dollé P, Chambon P (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349

    Article  CAS  PubMed  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    CAS  PubMed  Google Scholar 

  • Rittler M, Lopez-Camelo JS, Castilla EE, Bermejo E, Cocchi G, Correa A et al (2008) Preferential associations between oral clefts and other major congenital anomalies. Cleft Palate Craniofac J 45:525–532

    Article  PubMed  Google Scholar 

  • Roessler E, Muenke M (1998) Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inher Metab Dis 21:481–497

    Article  CAS  PubMed  Google Scholar 

  • Roessler E, Muenke M (2010) The molecular genetics of holoprosencephaly. Am J Med Genet C 154C:52–61

    Article  CAS  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW et al (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14:357–360

    Article  CAS  PubMed  Google Scholar 

  • Roessler E, Du Y-Z, Muller JL, Casas E, Allen WP, Gillessen-Kaesbach G et al (2003) Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci U S A 100:13424–13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler E, Ouspenkaia MV, Karkera JD, Vélez JI, Kantipong A, Lacbawan F et al (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler E, Lacbawan F, Dubourg C, Paulussen A, Herbergs J, Hehr U et al (2009) The full spectrum of holoprosencephaly-associated mutations with the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat 39:E541–E544

    Article  Google Scholar 

  • Roessler E, Hu P, Marino J, Hong S, Hart R, Berger S et al (2018) Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Hum Mutat 39:1416–1427

    Article  CAS  PubMed  Google Scholar 

  • Roffers-Agarwal J, Gammill LS (2009) Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation. Development 136:1879–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanelli Tavares VL, Gordon CT, Zechi-Ceide RM, Kokitsu-Nakaka NM, Voisin N, Tan TY et al (2015) Novel variants in GNAI3 associated with auriculocondylar syndrome strengthen a common dominant negative effect. Eur J Hum Genet 23:481–485

    Article  CAS  PubMed  Google Scholar 

  • Ronen GM, Andrews WL (1991) Holoprosencephaly as a possible embryonic alcohol effect. Am J Med Genet 40:151–154

    Article  CAS  PubMed  Google Scholar 

  • Rosa F, Piazza-Hepp T, Goetsch R (1994) Holoprosencephaly with 1st trimester topical isotretinoin. Teratology 49:418–419

    Google Scholar 

  • Roubicek M, Spranger J, Wende S (1981) Frontonasal dysplasia as an expression of holoprosencephaly. Eur J Pediatr 137:229–231

    Article  CAS  PubMed  Google Scholar 

  • Rozendaal AM, Luijsterburg AM, Ongkosuwito EM, de Vries E, Vermeij-Keers C (2011) Decreasing prevalence of oral cleft live births in the Netherlands. Arch Dis Child Fetal Neonatol Ed 96:F212–F216

    Article  Google Scholar 

  • Rozendaal AM, Luijsterberg AJ, Ongkosuwito EM, van den Boogaard MJ, de Vries E, Hovius SE, Vermeij-Keers C (2012) Delayed diagnosis and underreporting of congenital anomalies associated with oral clefts in the Netherlands: a national validation study. J Plast Reconstr Aesthet Surg 65:780–790

    Article  CAS  PubMed  Google Scholar 

  • Rozendaal AM, van Essen AJ, te Meerman GJ, Bakker MK, van der Biezen JJ, Goorhuis-Brouwer SM et al (2013) Periconceptional folic acid associated with an increased risk of oral clefts relative to non-foliate related malformations in the Netherlands: a population-based case-control study. Eur J Epidemiol 28:875–887

    Article  CAS  PubMed  Google Scholar 

  • Rudé FP, Anderson L, Conley D, Gasser RF (1994) Three-dimensional reconstructions of the primary palate region in normal human embryos. Anat Rec 238:108–113

    Article  PubMed  Google Scholar 

  • Saethre H (1931) Ein Beitrag zum Turmschädelproblem (Pathogenese, Erblichkeit, und Symptomologie). Deutsch Z Nervenheilk 117:533–555

    Article  Google Scholar 

  • Sai X, Ladher RK (2015) Early steps in inner ear development: Induction and morphogenesis of the otic placode. Front Pharmacol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai Y (1989) Neurulation in the mouse: manner and timing of neural tube closure. Anat Rec 223:194–203

    Article  CAS  PubMed  Google Scholar 

  • Sanchez E, Laplace-Builhé B, Tran Mau-Them F, Richard E, Goldenberg A, Toler TL et al (2020) POLR18 and neural crest anomalies in Treacher Collins syndrome type 4. Genet Med 22:547–566

    Article  PubMed  Google Scholar 

  • Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA (2014) Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol 385:200–210

    Article  CAS  PubMed  Google Scholar 

  • Sandikcioglu M, Molsted K, Kjaer I (1994) The prenatal development of the human nasal and vomeronasal bones. J Craniofac Genet Dev Biol 14:124–134

    CAS  PubMed  Google Scholar 

  • Sanlaville D, Verloes A (2007) CHARGE syndrome: an update. Eur J Hum Genet 15:389–399

    Article  CAS  PubMed  Google Scholar 

  • Sanlaville D, Etchevers HC, Gonzales M, Martinovic J, Clément-Ziza M, Delezoide AL et al (2006) Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 43:211–217

    Article  CAS  PubMed  Google Scholar 

  • Santagati F, Rijli FM (2003) Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 4:806–818

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Petiot A, Copp A, Ferretti P, Thorogood P (2001) FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development 128:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Sarma AS, Banda L, Vupputuri MR, Desai A, Dalal A (2022) A new FOXE1 homozygous frameshift variant expands the phenotypic spectrum of Bamforth-Lazarus syndrome. Eur J Med Genet 65:104591

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Matsuishi T, Utsunomiya N, Yamashita Y, Horikoshi T, Okudera T, Hashimoto T (1987) Aicardi syndrome with holoprosencephaly and cleft lip and palate. Pediatr Neurol 3:114–116

    Article  CAS  PubMed  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    Article  CAS  PubMed  Google Scholar 

  • Saunders CJ, Zhao W, Ardinger HH (2009) Comprehensive ZEB2 gene analysis for Mowat-Wilson syndrome in a North-American cohort: a suggested approach to molecular diagnostics. Am J Med Genet A 149A:2527–2531

    Article  PubMed  Google Scholar 

  • Scambler PJ (1994) DiGeorge syndrome and related birth defects. Semin Dev Biol 5:303–310

    Article  Google Scholar 

  • Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9:2421–2426

    Article  CAS  PubMed  Google Scholar 

  • Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11:393–404

    Article  CAS  PubMed  Google Scholar 

  • Schilling TF, Kimmel B (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120:483–494

    Article  CAS  PubMed  Google Scholar 

  • Schilling TF, Le Pabic P (2014) Neural crest cells in craniofacial sketelal development. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 127–151

    Chapter  Google Scholar 

  • Schinzel A (1983) Catalogue of unbalanced chromosome aberrations in man. De Gruyter, Berlin

    Book  Google Scholar 

  • Schneider RA, Hu D, Rubinstein JLR, Maden M, Helms JA (2001) Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 128:2755–2767

    Article  CAS  PubMed  Google Scholar 

  • Schorle H, Meier P, Bucheri M, Jaenisch R, Mitchell PJ (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238

    Article  CAS  PubMed  Google Scholar 

  • Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 106:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sechrist J, Serbedzija GN, Scherson T, Fraser SE, Bronner-Fraser M (1993) Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118:691–703

    Article  CAS  PubMed  Google Scholar 

  • Sedano HO, Cohen MM Jr, Jirásek JE, Gorlin RJ (1970) Frontonasal dysplasia. J Pediatr 76:906–913

    Article  CAS  PubMed  Google Scholar 

  • Sedlacková E (1967) The syndrome of the congenitally shortened velum. The dual innervation of the soft palate. Folia Phoniatr Logop 19:441–443

    Article  Google Scholar 

  • Sefton M, Sánchez S, Nieto MA (1998) Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo. Development 125:3111–3121

    Article  CAS  PubMed  Google Scholar 

  • Selber J, Reid RR, Chike-Obi CJ, Sutton LN, Zackai EH, McDonald-McGinn D et al (2008) The changing epidemiologic spectrum of single-suture synostoses. Plast Reconstr Surg 122:527–533

    Article  CAS  PubMed  Google Scholar 

  • Sergi C, Kamnasaran D (2011) PRRX1 is mutated in a fetus with agnathia-otocephaly. Clin Genet 79:293–295

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Liu C, Song Y, Ye W, Yuan G, Gu S et al (2015) FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol 7:441–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VP, Fenwick AL, Brockop MS, McGowan SJ, Goos JAC, Hoogeboom AJM et al (2013) Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 45:304–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheahan S, Bellamy CO, Hazland SN, Harrison DJ, Prost S (2008) TGFbeta induces apoptosis and EMT in primary mouse hepatocytes, independent of p53, p21Cip1 or Rb status. BMC Cancer 8:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin SH, Kogerman P, Lindstom E, Toftgard R, Biesecker LG (1999) GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci U S A 96:288–304

    Article  Google Scholar 

  • Shiota K (1993) Teratothanasia: prenatal loss of abnormal conceptuses and the prevalence of various malformations during human gastrulation. Birth Defects 29:189–199

    CAS  PubMed  Google Scholar 

  • Shiota K (2021) A lefe-table analysis of the intrauterine fate of malformed human embryos and fetuses. Birth Defects Res 113:623–632

    Article  CAS  PubMed  Google Scholar 

  • Shiota K, Yamada S (2010) Early pathogenesis of holoprosencephaly. Am J Med Genet C 154C:22–28

    Article  Google Scholar 

  • Shirai Y, Kawabe K, Tosa I, Tsukamoto D, Yamada D, Takarada T (2019) Runx2 function in cells of neural crest origin during intramembranous ossification. Biochem Biophys Res Commun 509:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Shprintzen RJ, Goldberg RB, Lewin HL, Sidoti EJ, Berkman MD, Argamaso RV (1978) A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome. Cleft Palate J 15:56–62

    CAS  PubMed  Google Scholar 

  • Shrestha UD, Adhikari S (2015) Craniofacial microstomia: Goldenhar syndrome in association with bilateral congenital cataract. Case Rep Ophthalmol Med 2015:3

    Google Scholar 

  • Siebert J, Cohen MM Jr, Sulik KK, Shaw C-M, Lemire RJ (1990) Holoprosencephaly: an overview and atlas of cases. Wiley-Liss, New York

    Google Scholar 

  • Singh S, Groves AK (2016) The molecular basis of craniofacial placode development. Wiley Interdiscipl Rev Dev Biol 3:363–376

    Article  Google Scholar 

  • Smith DW, Töndury G (1978) Origin of the calvaria and its sutures. Am J Dis Child 132:662–666

    CAS  PubMed  Google Scholar 

  • Smits-van Prooije AE, Vermeij-Keers C, Poelmann RE, Mentink MMT, Dubbeldam JA (1985) The neural crest in presomite to 40-somite murine embryos. Acta Morphol Neerl Scand 23:99–114

    CAS  PubMed  Google Scholar 

  • Smits-van Prooije AE, Vermeij-Keers C, Dubbeldam JA, Mentink MMT, Poelmann RE (1987) The formation of mesoderm and mesectoderm in presomite rat embryos cultured in vitro, using WGA-Au as a marker. Anat Embryol (Berl) 176:71–77

    Article  CAS  PubMed  Google Scholar 

  • Smits-van Prooije AE, Vermeij-Keers C, Poelmann RE, Mentink MMT, Dubbeldam JA (1988) The formation of mesoderm and mesectoderm in 5- to 41-somite rat embryos cultured in vitro, using WGA-Au as a marker. Anat Embryol (Berl) 177:245–256

    Article  CAS  PubMed  Google Scholar 

  • Som PM, Naidich TP (2013) Illustrated review of the embryology and development of the facial region, Part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol 34:2233–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J (2007) EMT or apoptosis: a decision for TGF-β. Cell Res 17:289–290

    Article  CAS  PubMed  Google Scholar 

  • Sperber GH (2001) Craniofacial development. Decker, Hamilton

    Google Scholar 

  • Sperber GH (2002) Craniofacial embryogenesis: normal developmental mechanisms. In: Mooney MP, Siegel MI (eds) Understanding craniofacial anomalies: the etiopathogenesis of craniosynostosis and facial clefting. Wiley-Liss, New York, pp 31–59

    Google Scholar 

  • Sperber GH, Gorlin RJ (1997) Head and neck. In: Gilbert-Barness E (ed) Potter’s pathology of the fetus and infant. Mosby, St. Louis, MI, pp 1541–1579

    Google Scholar 

  • Sperber GH, Honore LH, Johnson ES (1986) Acalvaria, holoprosencephaly and facial dysmorphia syndrome. In: Melnick M (ed) Current concepts in craniofacial anomalies. Wiley Liss, New York, pp 318–329

    Google Scholar 

  • Sperber GH, Sperber SM, Guttmann GD (2010) Craniofacial embryogenetics and development. People’s Medical Publishing House, Shelton, CT

    Google Scholar 

  • Spritz RA, Chiang P-W, Oiso N, Alkhateeb A (2003) Human and mouse disorders of pigmentation. Curr Opin Genet Dev 13:284–289

    Article  CAS  PubMed  Google Scholar 

  • Starck D (1975) Embryologie, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  • Steventon B, Mayor R (2012) Early neural crest induction requires an initial inhibition of Wnt signals. Dev Biol 365:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streeter GL (1906) On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. Am J Anat 6:139–165

    Article  Google Scholar 

  • Streeter GL (1918) The histogenesis and growth of the otic capsule and its contained periotic tissue-spaces in the human embryo. Contrib Embryol Carnegie Inst 7:5–54

    Google Scholar 

  • Streeter GL (1922) Development of the auricle in the human embryo. Contrib Embryol Carnegie Inst 14:111–138

    Google Scholar 

  • Sulik KK (1996) Craniofacial development. In: Turvey TA, Vig KWL, Fonseca RJ (eds) Facial clefts and synostosis – principles and management. Saunders, Philadelphia, PA, pp 3–27

    Google Scholar 

  • Sulik KK, Johnston MC, Smiley SJ, Speight HS, Jarvis BE (1987) Mandibulofacial dysostosis (Treacher Collins syndrome): a new proposal for its pathogenesis. Am J Med Genet 27:359–372

    Article  CAS  PubMed  Google Scholar 

  • Sulik KK, Cook CS, Webster WS (1988) Teratogens and craniofacial malformations: relationship to cell death. Development 103:213–231

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Meyers EN, Lewandoski M, Martin GR (1999) Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 13:1834–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabó A, Mayor R (2018) Mechanisms of neural crest migration. Annu Rev Genet 52:43–63

    Article  PubMed  Google Scholar 

  • Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ (2010) New directions in craniofacial morphogenesis. Dev Biol 341:84–94

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Nuckolls GH, Takahashi I, Nonaka K, Nagata M, Ikura T et al (2001) Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells. Dev Dyn 222:252–262

    Article  CAS  PubMed  Google Scholar 

  • Tan S-S, Morriss-Kay G (1985) The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Res 240:403–416

    Article  CAS  PubMed  Google Scholar 

  • Taneyhill LA, Padmanabhan R (2014) The cell biology of neural crest cell delamination and EMT. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 51–72

    Chapter  Google Scholar 

  • Tavormina P, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS et al (1995) Thanatophoric dysplasia (Type I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9:321–328

    Article  CAS  PubMed  Google Scholar 

  • Taylor AI (1968) Autosomal trisomy syndrome: a detailed study of 27 cases of Edwards’ syndrome and 27 cases of Patau’s syndrome. J Med Genet 5:227–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Berge D, Brouwer A, El Bahi S, Guénet JL, Robert B, Meijlink F (1998a) Mouse Alx3: an aristaless-like homeobox gene expressed during embryogenesis in ectomesenchyme and lateral plate mesoderm. Dev Biol 199:11–25

    Article  PubMed  Google Scholar 

  • ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F (1998b) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125:3831–3842

    Article  PubMed  Google Scholar 

  • ten Berge D, Brouwer A, Korving J, Reijnen MJ, van Raaij EJ, Verbeek F et al (2001) Prx1 and Prx2 are upstream regulators of sonic hedgehog and control cell proliferation during mandibular arch morphogenesis. Development 128:2929–2938

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Vermeij-Keers C, Lohman AHM (2007) Hoofd en hals. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, NL, pp 545–727. (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Němcová V, Lammens M, Overeem S, Keyser A (2011) The autonomic nervous system. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Heidelberg, pp 564–602

    Chapter  Google Scholar 

  • Terrazas-Falcon K, Watt KEN, Dash S, Achilleos A, Moore E, Zhao R et al (2021) Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. bioRxiv. 2021.09.22.461379

    Google Scholar 

  • Thauvin-Robinet C, Cossee M, Cornier-Daire V, Van Maldergem L, Toutain A, Alembik Y et al (2006) Clinical, molecular, and genotype-phenotype correlation studies from 25 cases of oral-facial-digital syndrome type 1: a French and Belgian collaborative study. J Med Genet 45:54–61

    Google Scholar 

  • Thauvin-Robinet C, Franco B, Saugier-Veber P, Aral B, Gigot N, Donzel A et al (2009) Genomic deletions of OFD1 account for 23% of oral-facial-digital type 1 syndrome after negative DNA sequencing. Hum Mutat 30:E320–E329

    Article  PubMed  Google Scholar 

  • The Treacher Collins Syndrome Collaborative Group (1996) Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat Genet 12:130–136

    Article  Google Scholar 

  • Theveneau E, Mayor R (2012) Neural crest delamination and migration: from neuroepithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366:34–54

    Article  CAS  PubMed  Google Scholar 

  • Theveneau E, Mayor R (2014) Neural crest cell migration: guidance, pathways, and cell-cell interactions. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 73–88

    Chapter  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  • Thompson DNP, Malcolm GP, Jones BM, Harkness WJ, Hauward RD (1995) Intracranial pressure in single-suture craniosynostosis. Pediatr Neurosurg 22:235–240

    Google Scholar 

  • Thompson H, Tucker AS (2013) Dual origin of the epithelium of the mammalian middle ear. Science 339:1453–1456

    Article  CAS  PubMed  Google Scholar 

  • Thompson H, Ohazama A, Sharpe PT, Tucker AS (2012) The origin of the stapes and relationship to the otic capsule and oval window. Dev Dyn 241:1396–1404

    Article  PubMed  Google Scholar 

  • Timberlake AT, Griffin C, Heike CL, Hing AV, Cunningham ML, Chitayat D et al (2021) Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat Commun 12:4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tint OS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, Salen G (1994) Defective cholesterol biosynthesis associated with Smith-Lemli-Opitz syndrome. N Engl J Med 330:107–113

    Article  CAS  PubMed  Google Scholar 

  • Tobin JL, Di Franco M, Eichers E, May-Simers H, Garcia M, Yan J et al (2008) Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet-Biedl syndrome. Proc Natl Acad Sci U S A 105:6714–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainor PA (2003) The bills of qucks and duails. Science 299:523–524

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA (2010) Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet A 152A:2984–2994

    Article  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000a) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000b) Plasticity in mouse neural crest cells reveals a novel role for cranial mesoderm signalling in regulation of the Hox programme and A-P patterning. Nat Cell Biol 2:96–102

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13:698–705

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Tam PP (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121:2569–2582

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Tan S-S, Tam PPL (1994) Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 120:2397–2408

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Ariza-McNaughton L, Krumlauf R (2002a) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Sobieszczuk D, Wilkinson D, Krumlauf R (2002b) Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development 129:433–442

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Melton KR, Manzanares M (2003) Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 47:541–553

    PubMed  Google Scholar 

  • Treacher Collins E (1900) Cases with symmetrical congenital notches in the outer part of each lower lid and defective development of the malar bones. Trans Ophthalmol Soc UK 20:190–192

    Google Scholar 

  • Twigg S, Kan R, Babbs C, Bochukova EG, Robertson SR, Wall SA et al (2004) Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A 101:8652–8657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg SRF, Matsumoto K, Kidd AMJ, Goriely A, Taylor IB, Fisher RB et al (2006) The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males. Am J Hum Genet 78:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg SRF, Versnel SL, Nurnberg G, Lees MM, Bhat M, Hammond P et al (2009) Frontorhiny, a distinctive presentation of frontonasal dysplasia caused by recessive mutations in the ALX3 homeobox gene. Am J Hum Genet 84:698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg SRF, Lloyd D, Jenkins D, Elcioglu NE, Cooper CDO, Al-Sannaa N et al (2012) Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization. Am J Hum Genet 91:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg SRF, Vorgia E, McGowan SJ, Preaki I, Fenwick AL, Sharma VP et al (2013) Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signalling to regulation of osteogenesis. Nat Genet 45:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 350:595–604

    Article  Google Scholar 

  • van de Beeten SDC, Cornelissen MJ, van Seeters RM, Versnel SL, Loudon SE, Mathijssen IMJ (2019) Papilledema in unicoronal synostosis: a rare finding. J Neurosurg Pediatr 24:139–144

    Article  PubMed  Google Scholar 

  • Van de Putte T, Franess A, Nelles L, van Grunsven LA, Huylebroeck D (2007) Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet 16:1423–1436

    Article  PubMed  Google Scholar 

  • Van De Water TR, Noden DM, Maderson PFA (1988) Embryology of the ear: outer, middle and inner. Otol Med Surg 1:3–27

    Google Scholar 

  • Van der Meulen J, Mazzola R, Stricker M, Raphael B (1990) Classification of craniofacial malformations. In: Stricker M, Van der Meulen JC, Raphael B, Mazzola R, Tolhurst DE, Murray JE (eds) Craniofacial malformations. Churchill Livingstone, Edinburgh, pp 149–309

    Google Scholar 

  • van Gijn DR, Tucker AS, Cobourne MT (2013) Craniofacial development. Current concepts in the molecular basis of Treacher Collins syndrome. Br J Oral Maxillofac Surg 61:384–388

    Article  Google Scholar 

  • van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K et al (2003) Interaction between Smad-interacting protein-1 and the corepressor c-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J Biol Chem 278:26135–26145

    Article  PubMed  Google Scholar 

  • van Oostrom CG (1972) De initiële regionale ectoderm-ontwikkeling in het kopgebied bij de muis. Thesis, University of Amsterdam (in Dutch)

    Google Scholar 

  • van Ravenswaaij-Arts C, Martin DM (2017) New insights and advances in CHARGE syndrome: diagnosis, etiologies, treatments, and research characteristics. Am J Med Genet 175C:397–406

    Article  Google Scholar 

  • Varga ZM, Wegner J, Westerfield M (1999) Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126:5533–5546

    Article  CAS  PubMed  Google Scholar 

  • Vega-Lopez G, Cerrizuela S, Tribulo C, Aybar MJ (2018) Neurocristopathies: new insights 150 years after the neural crest discovery. Dev Biol 444:8110–8143

    Article  Google Scholar 

  • Verloes A (2005) Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A 133A:306–308

    Article  PubMed  Google Scholar 

  • Verloes A, Dodinval P, Beco L, Bonnivert J, Lambotte C (1990) Lambotte syndrome: microcephaly, holoprosencephaly, intrauterine growth retardation, facial anomalies, and early lethality – a new sublethal multiple congenital anomaly/mental retardation syndrome in four sibs. Am J Med Genet 37:119–123

    Article  CAS  PubMed  Google Scholar 

  • Vermeij-Keers C (1972) Transformations in the facial region of the human embryo. Adv Anat Embryol Cell Biol 46:1–30

    Google Scholar 

  • Vermeij-Keers C (1990) Craniofacial embryology and morphogenesis: normal and abnormal. In: Stricker M, van der Meulen JC, Raphael B, Mazzola R, Tolhurst DE (eds) Craniofacial malformations. Churchill-Livingstone, Edinburgh, pp 27–60

    Google Scholar 

  • Vermeij-Keers C, Poelmann RE (1980) The neural crest: a study on cell degeneration and the improbability of cell migration in mouse embryo. Neth J Zool 30:74–81

    Google Scholar 

  • Vermeij-Keers C, Mazzola RF, van der Meulen JC, Stricker M, Raphael B (1983) Cerebro-craniofacial and craniofacial malformations: an embryological analysis. Cleft Palate J 20:128–145

    CAS  PubMed  Google Scholar 

  • Vermeij-Keers C, Poelmann RE, Smits-van Prooije AE, van der Meulen JC (1984) Hypertelorism and the median cleft face syndrome. An embryological analysis. Ophthalmic Pediatr Genet 4:97–105

    Article  CAS  Google Scholar 

  • Vermeij-Keers C, Poelmann RE, Smits-van Prooije AE (1987) 6.5-mm Human embryo with a single nasal placode: cyclopia or hypotelorism? Teratology 36:1–6

    Article  CAS  PubMed  Google Scholar 

  • Vermeij-Keers C, Rozendaal AM, Luijsterberg AJM, Latief BS, Lekkas C, Kragt L, Ongkosuwito EM (2018) Subphenotyping and classification of cleft palate and alveolus in adult unoperated patients: a new embryological approach. Cleft Palate Craniofac J 55:1267–1276

    Article  PubMed  Google Scholar 

  • Vermot J, Niederreither K, Garnier JM, Chambon P, Dollé P (2003) Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc Natl Acad Sci U S A 100:1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verwoerd CDA, van Oostrom CG (1979) Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol 58:1–75

    CAS  PubMed  Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    Article  CAS  PubMed  Google Scholar 

  • Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM et al (2004) Mutations in a new member of the chromodomain family cause CHARGE syndrome. Nat Genet 36:955–957

    Article  CAS  PubMed  Google Scholar 

  • Vissers LE, Cox TC, Maga AM, Short KM, Wiradjaja F, Janssen IM et al (2011) Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet 7:e1002278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    Article  CAS  PubMed  Google Scholar 

  • Waardenburg PJ (1951) A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet 3:195–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wackenheim A (1967) Les dysplasies des condyles occipitaux. Ann Radiol 11:535–543

    Google Scholar 

  • Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H et al (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370

    Article  CAS  PubMed  Google Scholar 

  • Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A et al (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22:196–198

    Article  CAS  PubMed  Google Scholar 

  • Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB et al (2008) Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Hum Genet A 146A:2008–2012

    Article  CAS  Google Scholar 

  • Wang Q, Kurosaka H, Kikuchi M, Nakaya A, Trainor PA, Yamashiro T (2019) Perturbed cranial neural crest development in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech 12(10):1242

    Article  Google Scholar 

  • Wang Q, Lin X, Miura J, Kumar-Saha M, Uemura Y, Sandell LL et al (2021) Branchiomeric muscle development requires proper retinoic acid signaling. Front Cell Dev Biol 9:596838

    Article  PubMed  PubMed Central  Google Scholar 

  • Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM (2008) Zic2-associated holoprosencephaly caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17:2986–2996

    Article  CAS  PubMed  Google Scholar 

  • Webster WS, Johnston MC, Lammer EJ, Sulik KK (1986) Isotretinoin embryopathy and the cranial neural crest: an in vivo and in vitro study. J Craniofac Genet Dev Biol 6:211–222

    CAS  PubMed  Google Scholar 

  • Weller GL Jr (1933) Development of the thyroid, parathyroid and thymus glands in man. Contrib Embryol Carnegie Inst 24:93–142

    Google Scholar 

  • Whiteford ML, Tolmie JL (1996) Holoprosencephaly in the west of Scotland 1975–1994. J Med Genet 33:578–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley MJ, Cauwenbergs P, Taylor IM (1983) Effects of retinoic acid on the development of the facial skeleton in hamsters; early changes involving neural crest cells. Acta Anat 116:180–192

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AOM (1997) Craniosynostosis: genes and mechanisms. Hum Mol Genet 6:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AOM, Morriss-Kay GM (2001) Genetics of craniofacial development and malformation. Nat Rev Neurosci 2:458–468

    Article  CAS  Google Scholar 

  • Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD et al (1995) Apert syndrome results from localized mutations of FGFGR2 and is allelic with Crouzon syndrome. Nat Genet 9:165–172

    Article  CAS  PubMed  Google Scholar 

  • Willhite CC, Hill RM, Irving AW (1986) Isotretinoin-induced craniofacial malformations in humans and hamsters. J Craniofac Genet Dev Biol 6:193–209

    Google Scholar 

  • Williams AL, Bohnsack BL (2015) Neural crest derivatives in ocular development: discerning the eye of the storm. Birth Defects Res C Embryo Today 105:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AL, Bohnsack BL (2020) The ocular neural crest’s specification, migration, and then what? Front Cell Dev Biol 6:595896

    Article  Google Scholar 

  • Williams PL et al (eds) (1995) Gray’s Anatomy, 38th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Wiszniak SE, Schwarz QP (2014) Neural crest cells in vascular development. In: Trainor PA (ed) Neural crest cells. Evolution, development and disease. Academic, San Diego, CA, pp 313–333

    Chapter  Google Scholar 

  • Wong GB, Mulliken JB, Benacerraf BR (2001) Prenatal diagnosis of major craniofacial anomalies. Plast Reconstr Surg 108:1316–1333

    Article  CAS  PubMed  Google Scholar 

  • Woods RH, Ul-Haq E, Wilkie AOM, Jayamohan J, Richard PG, Johnson D et al (2009) Reoperation for intracranial hypertension in TWIST1-confirmed Saethre-Chotzen syndrome: a 15-year review. Plast Reconstr Surg 123:1801–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wraith JE, Super M, Watson GH, Phillips M (1985) Velo-cardio-facial syndrome presenting as holoprosencephaly. Clin Genet 27:408–410

    Article  CAS  PubMed  Google Scholar 

  • Wright S, Wagner K (1934) Types of subnormal development of the head from inbred strains of guinea pigs and their bearing on the classification and interpretation of vertebrate monsters. Am J Anat 54:383

    Article  Google Scholar 

  • Wright TJ, Hatch EP, Karabagli H, Karabagli P, Schoenwolf GC, Mansour SL (2003) Expression of mouse fibroblast growth factor receptor genes during early inner ear development. Dev Dyn 228:267–272

    Article  CAS  PubMed  Google Scholar 

  • Wu YQ, Badano JL, McCaskill C, Vogel H, Potocki L, Shaffer LG (2000) Haploinsufficiency of ALX4 as a potential cause of parietal foramina in the 11p11.2 contiguous gene-deletion syndrome. Am J Hum Genet 67:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Saint-Jeannet J-P, Klein PS (2003) Wnt-frizzled signaling in neural crest formation. Trends Neurosci 26:40–45

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Kurosaka H, Wang Q, Ohara H, Tsujimoto T, Inubushi T et al (2022) Retinoic acid deficiency underlies midfacial clefts. J Dent Res 101(6):686–694

    Article  CAS  PubMed  Google Scholar 

  • Wuyts W, Cleiren E, Homfray T, Rasore-Quartino A, Vanhoenacker F, Van Hul W (2000a) The ALX4 homeobox gene is mutated in patients with ossification defects of the skull. J Med Genet 37:916–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuyts W, Reardon W, Preis S, Homfrey T, Rasore-Quartino A, Christians H et al (2000b) Identification of mutations in the MSX2 homeobox gene in families affected with foramina parietalia permagna. Hum Mol Genet 9:1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li J, Zhang T, Jiang H, Ramakrishnan A, Fritzsch B (2021) Chromatin remodelers and lineage-specific factors interact to target enhancers to establish preneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A 118:e2025196118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009) Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 315:2231–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X-R, Wright JR Jr, Yu W, Langdon KD, Somerset D, Thomas MA (2022) Parietal bone agenesis and athelia in retinoic acid embryopathy: an expansion of the phenotype. Birth Defects Res 114:17–22

    Article  CAS  PubMed  Google Scholar 

  • Yi S, Albino FP, Wood BC, Sauerhammer TM, Rogers GF, Oh AK (2016) An unconventional presentation of branchio-oculo-facial syndrome. J Craniofac Surg 27:1412–1414

    Article  PubMed  Google Scholar 

  • York JR, Yuan T, McCauley DW (2020) Evolutionary and developmental associations of neural crest and placodes in the vertebrate head: insights from yawless vertebrates. Front Physiol 11:986

    Article  PubMed  PubMed Central  Google Scholar 

  • Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, Tucker AS et al (2014) Embryonic bauplans and the developmental origins of facial diversity and constraints. Development 141:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Ma L, Yuan Y, Ye X, Montagne A, He J et al (2021) Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 184:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yutzey KE (2010) DiGeorge syndrome, Tbx1, and retinoic acid signalling come full circle. Circ Res 106:630–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP et al (1996) Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381:238–241

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Trainor PA (2022) Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 138:54–67

    Article  PubMed  Google Scholar 

  • Zhao Q, Behringer RR, DeCrombrugghe B (1996) Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat Genet 13:275–283

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Muniver E, Chen Y, Sebald E et al (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103:19004–19009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–5167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vermeij-Keers, C., Mathijssen, I.M.J., Trainor, P., ten Donkelaar, H.J. (2023). The Neural Crest and Craniofacial Malformations. In: Clinical Neuroembryology. Springer, Cham. https://doi.org/10.1007/978-3-031-26098-8_5

Download citation

Publish with us

Policies and ethics