Skip to main content

Regenerative Medicine in Dentistry

  • Chapter
  • First Online:
Musculoskeletal Ultrasound-Guided Regenerative Medicine
  • 964 Accesses

Abstract

In concordance with the principle of regenerative medicine which is to develop the science and tools that can help repair or replace damaged or diseased human cells or tissues, in dentistry this is matching with the concept of restoring function of damaged teeth or their supporting tissues. Dentistry has not only been the lead of restorative medicine but truly practice it. The restorative landscape of dentistry ranges from restoring decayed, fractured, or pulpal affected teeth and progress to dental implant and high-technology bone scaffold fabrication and end with a stem cell-based soft tissue engineering as well as bone bio-stimulation. In fact, the oral tissues, besides their ease accessibility, are a rich source of stem cells. Additionally, oral stem cells are likely to be perfect source for genetically reprogrammed cells, for instance, induced pluripotent stem (iPS) cells. This role of regenerative medicine in dentistry has kept it at the forefront of regenerative medicine developments. This chapter will shed light on the most recent advances of the contemporary dental regenerative medicine with regard to clinical availability and applications in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosemann A, Luo HY. Attitudes towards the donation of human embryos for stem cell research among Chinese IVF patients and students. J Bioethic Inq. 2018;15:441–57.

    Article  Google Scholar 

  2. Sivaraman MAF. Using surplus embryos and research embryos in stem cell research: ethical viewpoints of buddhist, hindu and catholic leaders in Malaysia on the permissibility of research. Sci Eng Ethics. 2018;24:129–49.

    Article  PubMed  Google Scholar 

  3. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29:532–9.

    Article  CAS  PubMed  Google Scholar 

  5. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. 2010;16:605–15.

    Article  CAS  Google Scholar 

  6. Liu HC, Wang DS, Su F, Wu X, Shi ZP, et al. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (l-lactide). Tissue Eng. 2011;17:2417–33.

    Article  CAS  Google Scholar 

  7. Seo M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  8. Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS, et al. In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation. 2012;83:249–59.

    Article  CAS  PubMed  Google Scholar 

  9. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787–98.

    Article  CAS  PubMed  Google Scholar 

  11. Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28:974–85.

    Article  PubMed  Google Scholar 

  12. Bohari SPM, Grover LM, Hukins DWL. Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture. J Tissue Eng. 2015;6:204.

    Article  CAS  Google Scholar 

  13. Bernardi S, Zeka K, Continenza MA. Application of low-level laser therapy in dentistry: laser biostimulation. JSM Oro Facial Surg. 2016;1:1002.

    Google Scholar 

  14. Hamza S, Fathy S, EL-Azab S. Effect of diode laser biostimulation compared to Teriparatide on induced osteoporosis in rats: an animal study from Egypt. Int J Clin Exp Pathol. 2020;13:1970–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Egusa H, Sonoyama W, MasahiroNishimura IA, Akiyama K. Stem cells in dentistry – Part I: stem cell sources. J Prosthodont Res. 2012;56:151–65.

    Article  PubMed  Google Scholar 

  16. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000;97:13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100:5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell mediated functional tooth regeneration in swine. PLoS. 2006;1:79.

    Article  CAS  Google Scholar 

  19. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34:166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morsczeck C, Schmalz G, Reichert T, Völlner F, Galler K, Driemel O. Somatic stem cells for regenerative dentistry. Clin Oral Investig. 2008;12:113–8.

    Article  PubMed  Google Scholar 

  21. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208:319–25.

    Article  CAS  PubMed  Google Scholar 

  22. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999;147:105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ning F, Guo Y, Tang J, Zhou J, Zhang H, Lu W, et al. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochem Biophys Res Commun. 2010;394:342–7.

    Article  CAS  PubMed  Google Scholar 

  24. Butler WT, Ritchie HH, Bronckers AL. Extracellular matrix proteins of dentine. Ciba Found Symp. 1997;205:107–17.

    CAS  PubMed  Google Scholar 

  25. Ruch JV. Odontoblast commitment and differentiation. Biochem Cell Biol. 1998;76:923–38.

    Article  CAS  PubMed  Google Scholar 

  26. Kitamura C, Kimura K, Nakayama T, Terashita M. Temporal and spatial expression of c-jun and jun-B proto-oncogenes in pulp cells involved with reparative dentinogenesis after cavity preparation of rat molars. J Dent Res. 1999;78:673–80.

    Article  CAS  PubMed  Google Scholar 

  27. Kao DW, Fiorellini JP. Regenerative periodontal therapy. Front Oral Biol. 2012;15:149–59.

    Article  PubMed  Google Scholar 

  28. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, et al. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation. 2008;76:495–505.

    Article  CAS  PubMed  Google Scholar 

  29. Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Meds. 2017;49:644–51.

    Article  Google Scholar 

  30. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17:761–73.

    Article  CAS  PubMed  Google Scholar 

  31. Christine Sedgley M, Tatiana BM. Dental stem cells and their sources. Dent Clin N Am. 2012;56:549–61.

    Article  PubMed  Google Scholar 

  32. Kang H, Lee MJ, Park SJ, Lee MS. Lipopolysaccharide-preconditioned periodontal ligament stem cells induce M1 polarization of macrophages through extracellular vesicles. Int J Mol Sci. 2018;19:3843.

    Article  PubMed Central  CAS  Google Scholar 

  33. Wu JY, Chen LL, Wang RF, Song Z, Shen ZS, Zhao YM. Exosomes secreted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis. ACS Biomater Sci Eng. 2019;5:3561–71.

    Article  CAS  PubMed  Google Scholar 

  34. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6.1–11.

    Google Scholar 

  36. Ono M, Oshima M, Ogawa M, Sonoyama W, Hara ES, Oida Y. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep. 2017;7:44522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alipour R, Sadeghi F, Hashemi-Beni B, Zarkesh-Esfahani SH, Heydari F, Mousavi SB, et al. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. Int J Prev Med. 2010;1:164–71.

    PubMed  PubMed Central  Google Scholar 

  38. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int. 2000;66:129–38.

    Article  CAS  PubMed  Google Scholar 

  39. Huang G, Sonoyama W, Chen J, Park S. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res. 2006;324:225–36.

    Article  PubMed  Google Scholar 

  40. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.

    Article  CAS  PubMed  Google Scholar 

  41. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003;9:976–81.

    Article  Google Scholar 

  42. Huang GT, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod. 2006;32:1066–73.

    Article  PubMed  Google Scholar 

  43. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005;20:1394–402.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 2006;12:2813–23.

    Article  CAS  PubMed  Google Scholar 

  45. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, et al. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ. 2007;14:1162–71.

    Article  PubMed  CAS  Google Scholar 

  46. Isaac J, Nassif A, Asselin A, Taihi I, Fohrer-Ting H, Klein C. Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing. Biomaterials. 2018;172:41–53.

    Article  CAS  PubMed  Google Scholar 

  47. Yang XR, Li L, Xiao L, Zhang DH. Recycle the dental fairy’s package: overview of dental pulp stem cells. Stem Cell Res Ther. 2018;9:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018;20:479–98.

    Article  PubMed  Google Scholar 

  49. Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One. 2012;7:1–12.

    Google Scholar 

  50. Zeitlin BD. Banking on teeth – Stem cells and the dental office. Biomed J. 2020;43:124–33.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, et al. SHED repair critical-size calvarial defects in mice. Oral Dis. 2008;14:428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Egusa H. iPS cells in dentistry. Clin Calcium. 2012;22:67–73.

    PubMed  Google Scholar 

  53. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons SM, Gomes Massironi GC, Pereira LV, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184:105–16.

    Article  CAS  PubMed  Google Scholar 

  54. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127:1671–9.

    Article  CAS  PubMed  Google Scholar 

  55. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci. 1998;95:3908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Narang S, Sehgal N. Stem cells: a potential regenerative future in dentistry. Indian J Hum Genet. 2012;18:150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, et al. Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A. 2011;17:1015–26.

    Article  CAS  PubMed  Google Scholar 

  58. Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol 2000. 2012;59:203–27.

    Article  PubMed  Google Scholar 

  59. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035–9; erratum in Cancer Res 2005; 65:4969.

    Article  CAS  PubMed  Google Scholar 

  60. Abe S, Yamaguchi S, Amagasa T. Multilineage cells from apical pulp of human tooth with immature apex. Oral Sci Int. 2007;4:13.

    Article  Google Scholar 

  61. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24:155–65.

    Article  CAS  PubMed  Google Scholar 

  62. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges J-C, Gennero I, Conte-Auriol F, et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/−7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007;329:283–94.

    Article  PubMed  CAS  Google Scholar 

  63. Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther. 2018;9:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–4.

    Article  CAS  PubMed  Google Scholar 

  65. Pereira LV, Bento RF, Cruz DB, Marchi C, Salomone R, Oiticicca J. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant. 2019;28:55–64.

    Article  PubMed  Google Scholar 

  66. Zhang N, Lu X, Wu S, Li X, Duan J, Chen C. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy. 2018;20:670–86.

    Article  CAS  PubMed  Google Scholar 

  67. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M. Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials. 2006;27:3766–81.

    Article  CAS  PubMed  Google Scholar 

  68. Yamada Y, Ueda M, Hibi H, Baba S. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent. 2006;26:363–9.

    PubMed  Google Scholar 

  69. Garant PR. Oral mucosa. In: Dickson, editor. Oral cells and tissues. Illinois: Quintessence; 2003. p. 81–122, 123–151.

    Google Scholar 

  70. Izumi K, Tobita T, Feinberg SE. Isolation of human oral keratinocyte progenitor/stem cells. J Dent Res. 2007;86:341–6.

    Article  CAS  PubMed  Google Scholar 

  71. Izumi K, Feinberg SE, Terashi H, Marcelo CL. Evaluation of transplanted tissue-engineered oral mucosa equivalents in severe combined immunodeficient mice. Tissue Eng. 2003;9:163–74.

    Article  PubMed  Google Scholar 

  72. Izumi K, Feinberg SE, Iida A, Yoshizawa M. Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. J Oral Maxillofac Surg. 2003;32:188–97.

    Article  CAS  Google Scholar 

  73. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, Pitaru S. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28:984–95.

    Article  CAS  PubMed  Google Scholar 

  74. Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, et al. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One. 2010;5:12743.

    Article  CAS  Google Scholar 

  75. Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, et al. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol. 2011;226:150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu SJ, Choi BH, Huh JY, Jung JH, Kim BY, Lee SH. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:164–9.

    Article  PubMed  Google Scholar 

  77. Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, et al. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:618–8..

    Google Scholar 

  78. Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, et al. Effective bone engineering with periosteum-derived cells. J Dent Res. 2007;86:79–83.

    Article  CAS  PubMed  Google Scholar 

  79. Ueno T, Honda K, Hirata A, Kagawa T, Kanou M, Shirasu N, et al. Histological comparison of bone induced from autogenously grafted periosteum with bone induced from autogenously grafted bone marrow in the rat calvarial defect model. Acta Histochem. 2008;110:217–23.

    Article  PubMed  Google Scholar 

  80. Soltan M, Smiler D, Soltan C. The inverted periosteal flap: a source of stem cells enhancing bone regeneration. Implant Dent. 2009;18:373–9.

    Article  PubMed  Google Scholar 

  81. Schmelzeisen R, Schimming R, Sittinger M. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg. 2003;31:34–9.

    Article  PubMed  Google Scholar 

  82. Nagata M, Hoshina H, Li M, Arasawa M, Uematsu K, Ogawa S, et al. A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption. Bone. 2012;50:1123–9.

    Article  PubMed  Google Scholar 

  83. Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263:202–14.

    Article  CAS  PubMed  Google Scholar 

  84. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340:544–52.

    Article  CAS  PubMed  Google Scholar 

  85. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:2063.

    Article  CAS  Google Scholar 

  86. Matsumoto S, Okumura K, Ogata A, Hisatomi Y, Sato A, Hattori K, et al. Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells. 2007;9:176–90.

    Article  CAS  PubMed  Google Scholar 

  87. Sato A, Okumura K, Matsumoto S, Hattori K, Hattori S, Shinohara M, et al. Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells. 2007;9:191–205.

    Article  CAS  PubMed  Google Scholar 

  88. Nanduri LS, Maimets SAP, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99:367–72.

    Article  CAS  PubMed  Google Scholar 

  89. Gorjup E, Danner S, Rotter N, Habermann J, Brassat U, Brummendorf TH, et al. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol. 2009;88:409–21.

    Article  CAS  PubMed  Google Scholar 

  90. Coppes RP, Stokman MA. Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis. 2011;17:143–53.

    Article  CAS  PubMed  Google Scholar 

  91. Kulakov AA, D.V. Clinical study of the efficiency of combined cell transplant on the basis of multipotent mesenchymal stromal adipose tissue cells in patients with pronounced deficit of the maxillary and mandibulary bone tissue. Bull Exp Biol Med. 2008;146:522–5.

    Article  CAS  PubMed  Google Scholar 

  92. Pieri F, Lucarelli E, Corinaldesi G, Aldini NN, Fini Parrilli A, et al. Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium. Biomaterials. 2010;31:3527–35.

    Article  CAS  PubMed  Google Scholar 

  93. Tobita M, Uysal AC, Ogawa R, Hyakusoku H, Mizuno H. Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng Part A. 2008;14:945–53.

    Article  CAS  PubMed  Google Scholar 

  94. Wen X, Nie X, Zhang L, Liu L, Deng M. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochem Biophys Res Commun. 2011;409:583–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ishizaka R, Iohara K, Murakami O, Fukuta M. Nakashima. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials. 2012;33:2109–18.

    Article  CAS  PubMed  Google Scholar 

  96. Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32:6995–7005.

    Article  CAS  PubMed  Google Scholar 

  97. Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Perussolo MC, Franco CRC, Chang H-W, Abdelwahid E, de Carvalho KAT. Adipose-derived stromal cells and mineralized extracellular matrix delivery by a human decellularized amniotic membrane in periodontal tissue engineering. Membranes (Basel). 2021;11:606.

    Article  CAS  Google Scholar 

  98. Dave JR. Dental tissue-derived mesenchymal stem cells: applications in tissue engineering. Crit Rev Biomed Eng. 2018;46:429–68.

    Article  PubMed  Google Scholar 

  99. Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P. Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng. 2006;16:107–13.

    Google Scholar 

  100. Yu H, Yang X, Cheng J, Wang X, Shen SG. Distraction osteogenesis combined with tissue-engineered cartilage in the reconstruction of condylar osteochondral defect. J Oral Maxillofac Surg. 2011;69:558–64.

    Article  Google Scholar 

  101. Holland TA, Bodde EWH, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo (poly (ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005;75:156–67.

    Article  PubMed  CAS  Google Scholar 

  102. Jazayeri HE, Lee S-M, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: a review. Dent Mater. 2020;36:47–58.

    Article  CAS  Google Scholar 

  103. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod Dent Pulp Tissue Eng Stem Cells Exfoliated Deciduous Teeth. 2008;34:962–9.

    Google Scholar 

  104. Huang GT. A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. J Dent. 2008;36:379–86.

    Article  PubMed  Google Scholar 

  105. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem. 2012;287:10590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Otsu K, Kishigami R, Oikawa-Sasaki A, Fukumoto S, Yamada A, Fujiwara N, et al. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev. 2011;21:1156–64.

    Article  PubMed  CAS  Google Scholar 

  107. Crespi R, Vinci R, Cappare P, Gherlone E, Romanos GE. Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. Int J Oral Maxillofac Implants. 2007;22:527–32.

    PubMed  Google Scholar 

  108. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34:645–5.

    Google Scholar 

  109. Koki Yoshida, Jun Sato, Rie Takai, Osamu Uehara, Yoshihito Kurashige, Michiko Nishimura et al. Differentiation of mouse iPS cells into ameloblast-like cells in cultures using medium conditioned by epithelial cell rests of Malassez and gelatincoated dishes. Med Mol Morphol. 2015;48:138–45.

    Google Scholar 

  110. Dixin Cui, Hongyu Li, Mian Wan, Yiran Peng, Xin Xu, Xuedong Zhou, Liwei Zheng. The origin and identification of mesenchymal stem cells in teeth: from odontogenic to non-odontogenic. Curr Stem Cell Res Ther. 2018;13:39–45.

    Google Scholar 

  111. Chung IH, Yamaza T, Zhao H, Choung PH, Shi S, Chai Y. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells. 2009;27:866–77.

    Article  CAS  PubMed  Google Scholar 

  112. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone. 2006;38:758–68.

    Article  CAS  PubMed  Google Scholar 

  113. Han J, Okada H, Takai H, Nakayama Y, Maeda T, Ogata Y. Collection and culture of alveolar bone marrow multipotent mesenchymal stromal cells from older individuals. J Cell Biochem. 2009;107:1198–204.

    Article  CAS  PubMed  Google Scholar 

  114. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001;82:583–90.

    Article  CAS  PubMed  Google Scholar 

  115. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, et al. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 2002;8:911–20.

    Article  CAS  PubMed  Google Scholar 

  116. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci. 2009;106:13475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, et al. Dental pulp cells for induced pluripotent stem cell banking. J Dent Res. 2010;89:773–8.

    Article  CAS  PubMed  Google Scholar 

  118. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393:377–83.

    Article  CAS  PubMed  Google Scholar 

  119. Kaku M, Kamada H, Kawata T, Koseki H, Abedini S, Kojima S. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology. 2010;61:73–8.

    Article  CAS  PubMed  Google Scholar 

  120. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35:1536–42.

    Article  PubMed  Google Scholar 

  121. Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol. 2011;136:455–73.

    Article  PubMed  CAS  Google Scholar 

  122. Kaukua N, Chen M, Guarnieri P, Dahl M, Lim ML, Yucel-Lindberg T. Molecular differences between stromal cell populations from deciduous and permanent human teeth. Stem Cell Res Ther. 2015;6:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol. 2016;231:2048–63.

    Article  CAS  PubMed  Google Scholar 

  124. Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Invest. 2016;20:75–81.

    Article  Google Scholar 

  125. Tsai AI, Hong HH, Lin WR, Fu JF, Chang CC, Wang IK. Isolation of mesenchymal stem cells from human deciduous teeth pulp. Biomed Res Int. 2017;3:1–9.

    Google Scholar 

  126. Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva IC, Pocas-Fonseca MJ. Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J. 2012;45:1080–90.

    Article  CAS  PubMed  Google Scholar 

  127. Wang G, Wang C, Qin M. A retrospective study of survival of 196 replanted permanent teeth in children. Dent Traumatol. 2019;35:251–8.

    Article  PubMed  Google Scholar 

  128. Krasner P. Treatment of avulsed teeth by oral and maxillofacial surgeons. J Oral Maxillofac Surg. 2010;68:2888–92.

    Article  PubMed  Google Scholar 

  129. Adnan S, Lone MM, Khan FR, Hussain SM, Nagi SE. Which is the most recommended medium for the storage and transport of avulsed teeth? A systematic review. Dent Traumatol. 2018;34:59–70.

    Article  PubMed  Google Scholar 

  130. Moazami F, Mirhadi H, Geramizadeh B, Sahebi S. Comparison of soymilk, powdered milk, Hank’s balanced salt solution and tap water on periodontal ligament cell survival. Dent Traumatol. 2012;28:132–5.

    Article  PubMed  Google Scholar 

  131. Andersson L, Andreasen JO, Day P, Heithersay G, Trope M, Diangelis AJ. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 2. Avulsion of permanent teeth. Dent Traumatol. 2012;28:88–96.

    Article  PubMed  Google Scholar 

  132. Chen FB, Qi SC, Yang QX, Zhang X, Xu YZ, Wang RR. Effect of temperature and six storage media on human dental pulp cells. Acta Med Mediterr. 2019;35:461–6.

    Google Scholar 

  133. Courts FJ, Mueller WA, Tabeling HJ. Milk as an interim storage medium for avulsed teeth. Pediatr Dent. 1983;5:183–6.

    CAS  PubMed  Google Scholar 

  134. Hasan MR, Takebe H, Shalehin N, Obara N, Saito T, Irie K. Effects of tooth storage media on periodontal ligament preservation. Dent Traumatol. 2017;33:383–92.

    Article  PubMed  Google Scholar 

  135. Sottovia AD, Sottovia D, Poi WR, Panzarini SR, Luize DS, Sonoda CK. Tooth replantation after use of euro-coffins solution or bovine milk as storage medium: a histomorphometric analysis in dogs. J Oral Maxillofac Surg. 2010;68:111–9.

    Article  PubMed  Google Scholar 

  136. Hwang JY, Choi SC, Park JH, Kang SW. The use of green tea extract as a storage medium for the avulsed tooth. J Endod. 2011;37:962–7.

    Article  PubMed  Google Scholar 

  137. Martins CM, Hamanaka EF, Hoshida TY, Sell AM, Hidalgo MM, Silveira CS. Dragon’s blood sap (Croton Lechleri) as storage medium for avulsed teeth: in vitro study of cell viability. Braz Dent J. 2016;27:751–6.

    Article  PubMed  Google Scholar 

  138. Ozan F, Polat ZA, Er K, Ozan U, Deger O. Effect of propolis on survival of periodontal ligament cells: new storage media for avulsed teeth. J Endod. 2007;33:570–3.

    Article  PubMed  Google Scholar 

  139. Babaji P, Melkundi M, Devanna R, Suresh SB, Chaurasia VR, Gopinath PV. In vitro comparative evaluation of different storage media (hank’s balanced salt solution, propolis, Aloe vera, and pomegranate juice) for preservation of avulsed tooth. Eur J Dermatol. 2017;11:71–5.

    Google Scholar 

  140. Sinpreechanon P, Boonzong U, Sricholpech M. Comparative evaluation of periodontal ligament fibroblasts stored in different types of milk: effects on viability and biosynthesis of collagen. Eur J Oral Sci. 2019;127:323–32.

    Article  CAS  PubMed  Google Scholar 

  141. Souza BD, Luckemeyer DD, Felippe WT, Simoes CM, Felippe MC. Effect of temperature and storage media on human periodontal ligament fibroblast viability. Dent Traumatol. 2010;26:271–5.

    Article  CAS  PubMed  Google Scholar 

  142. Piva E, Susan AT, Jacques EN, Zou D, Hatfield E, Guinn T. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod Dent Pulp Tiss Regen Using Dental Pulp Stem Cells Isolated Expand Hum Serum. 2017;43:568–74.

    Google Scholar 

  143. Suchanek J, Kleplova TS, Rehacek V, Browne KZ, Soukup T. Proliferative capacity and phenotypical alteration of multipotent ecto-mesenchymal stem cells from human exfoliated deciduous teeth cultured in xenogeneic and allogeneic media. Folia Biol-Prague. 2016;62:1–14.

    CAS  Google Scholar 

  144. Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Archives Oral Biol Role Endogenous Basic Fibroblast Growth Factor Stem Cells Isolated Hum Exfoliated Deciduous Teeth. 2015;60:408–15.

    CAS  Google Scholar 

  145. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37:163–76.

    Article  CAS  PubMed  Google Scholar 

  146. Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 2009;59:150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sunil PM, Manikandan R, Muthumurugan TRY, Sivakumar M. Harvesting dental stem cells – overview. J Pharm Bioallied Sci. 2015;7:S384–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee HS, Jeon M, Kim SO, Kim SH, Lee JH, Ahn SJ. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology. 2015;71:374–83.

    Article  CAS  PubMed  Google Scholar 

  149. Gioventu S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E. A novel method for banking dental pulp stem cells. Transfus Apher Sci. 2012;47:199–206.

    Article  PubMed  Google Scholar 

  150. Huynh NCN, Le SH, Doan VN, Ngo LTQ, Tran HLB. Simplified conditions for storing and cryopreservation of dental pulp stem cells. Arch Oral Biol. 2017;84:74–81.

    Article  CAS  PubMed  Google Scholar 

  151. Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G. Cryopreserved dental pulp tissues of exfoliated deciduous teeth are a feasible stem cell resource for regenerative medicine. PLoS One. 2012;7–13.

    Google Scholar 

  152. Lizier NF, Kerkis A, Gomes CM, Hebling J, Oliveira CF, Caplan AI. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One. 2012;7:1–12

    Google Scholar 

  153. Eastell R, Walsh JS. Anabolic treatment for osteoporosis: teriparatide. Clin Cases Miner Bone Metab. 2017;14:173.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Scalize PH, de Sousa LG, Regalo SC, Semprini M, Pitol DL, da Silva GA, de Almeida CJ, Coppi AA, Laad AA, Prado KF, Siessere S. Low-level laser therapy improves bone formation: stereology findings for osteoporosis in rat model. Lasers Med Sci. 2015;30:1599–607.

    Article  PubMed  Google Scholar 

  155. Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Ribeiro AC, Lahoz Mde A, Parizotto NA. Low level laser therapy (830 nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol. 2012;47:136–42.

    Article  PubMed  Google Scholar 

  156. Torstrick FB, Guldberg RE. Local strategies to prevent and treat osteoporosis. Curr Osteoporos Rep. 2014;12:33–40.

    Article  PubMed  Google Scholar 

  157. Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, Bayat M. Effect of low-level laser therapy and oxytocin on osteoporotic bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2018;119:983–97.

    Article  CAS  PubMed  Google Scholar 

  158. Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA. Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci. 2009;24:195–201.

    Article  PubMed  Google Scholar 

  159. Suzuki SS, Garcez AS, Reese PO, Suzuki H, Ribeiro MS, Moon W. Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation. Lasers Med Sci. 2018;33:811–21.

    Article  PubMed  Google Scholar 

  160. Xia B, Yang Z, Xu Z, Yonggang LV. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells. Biotechnol Appl Biochem. 2017;64:927–37.

    Article  CAS  PubMed  Google Scholar 

  161. El-Bialy T, Farouk K, Carlyle TD, Wiltshire W, Drummond R, Dumore T, Knowlton K, Tompson B. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: a prospective multi-center randomized controlled trial. J Clin Med. 2020;9:804.

    Article  PubMed Central  Google Scholar 

  162. Kaur H, El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS). J Clin Med. 2020;9:1303.

    Article  PubMed Central  Google Scholar 

  163. Lou S, Lv H, Li Z, Tang P, Wang Y. Effect of low-intensity pulsed ultrasound on distraction osteogenesis: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2018;13:205.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Inubushi T, Tanaka E, Rego EB. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells. J Periodontol. 2008;79:1984–90.

    Article  CAS  PubMed  Google Scholar 

  165. Li H, Zhou J, Zhu M, Ying S, Li L, Chen D, Li J, Song J. Low-intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration. J Biomed Mater Res A. 2021;109:1101–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Elazab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elazab, S. (2022). Regenerative Medicine in Dentistry. In: El Miedany, Y. (eds) Musculoskeletal Ultrasound-Guided Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-98256-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98256-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98255-3

  • Online ISBN: 978-3-030-98256-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics