Skip to main content

Stem Cells in Dentistry: Potential Applications and Perspectives in Clinical Research

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Abstract

Over the past decade there has been a dramatic progress in the field of stem cell research and a rapid surge in investigation of stem cell therapies. Current clinical trials using a variety of stem cell types are addressing a wide spectrum of conditions. Among different types of adult stem cells discovered, dental stem cells are among the newest found in the MSC repertoire. Dental stem cells can be isolated relatively easily through minimally invasive procedures from both young and adult populations. In particular, dental pulp stem cells (DPSCs) are found to have outstanding potentials because of their superior proliferation, multi-potent differentiation, regeneration, immunoprivileged, and immunomodulatory properties. In addition, DPSCs can be reprogrammed into induced pluripotent stem cells (iPSCs) with high efficiency, possibly due to their dual meso-ectodermal origin and intrinsic expression of pluripotent factors. The current chapter discusses their origin, biological niche, functional properties, reprogramming capability, and application potentials for therapeutics, cell banking, and tissue engineering toward construction of both dental and non-dental tissues. This chapter consists of three main sections: (1) Developmental biology and organization of dental-related stem cells; (2) Dental stem cell properties for cell-based therapeutics; (3) Potentials of dental stem cells for tissue engineering and cell banking. Overall this review provides current biological knowledge on dental stem cells and their translational applications at both in vitro and in vivo levels. The chapter is designed for both clinicians and researchers involved in odontogenesis and stem cell research alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DPSC:

Dental pulp stem cell

G-CSF:

Granulocyte-colony stimulating factor

GSC:

Stem cell from gingiva

HLA:

Human leukocyte antigen

IL-6:

Interleukin-6

iPSC:

Induced pluripotent stem cell

MHC:

Major histocompatibility complex

MSC:

Mesenchymal stem cell

NC:

Neural crest

NO:

Nitric oxide

PBMC:

Peripheral blood mononuclear cell

PDLSC:

Periodontal ligament stem cell

SCAP:

Stem cells from dental apical papilla

SHED:

Stem cells from human exfoliated deciduous teeth

SSEA:

Stage specific embryonic antigens

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

TRA:

Tumor recognition antigen

References

  • Apel C, Forlenza OV, de Paula VJ, et al. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J Neural Transm. 2009;116(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med. 2015;6(1):29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biben C, Wang C, Harvey RP. NK-2 class homeobox genes and pharyngeal/oral patterning: Nkx2-3 is required for salivary gland and tooth morphogenesis. Int J Dev Biol. 2002;46:415–22.

    CAS  PubMed  Google Scholar 

  • d’ Aquino R, De Rosa A, Lanza V, et al. Human Mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge bio complexes. Eur Cell Mater. 2009;18:75–83.

    Google Scholar 

  • De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.

    Article  PubMed  Google Scholar 

  • Ducret M, Fabre H, Farges J, et al. Production of human dental pulp cells with a medicinal manufacturing approach. J Endod. 2015;41:1–8.

    Article  Google Scholar 

  • Eslaminejad BM, Khorsand A, Arabsolghar M, et al. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J Oral Implantol. 2012;39:433–43.

    Google Scholar 

  • Fang D, Seo BM, Liu Y, et al. Transplantation of mesenchymal stem cells is an optimal approach for plastic surgery. Stem Cells. 2007;25(4):1021–8.

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Akiyama K, Liu Y, et al. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 2010;16(1):20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandia C, Arminan A, Garcia-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26:638–45.

    Article  PubMed  Google Scholar 

  • Gomes JA, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51(3):1408–14.

    Article  PubMed  Google Scholar 

  • Govindasamy V, Ronald VS, Abdullah AN, et al. Differentiation of dental pulp stem cells into islet like aggregates. J Dent Res. 2011;90(5):646–52.

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Award HA, Fermor B. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41(3-4):389–99.

    CAS  PubMed  Google Scholar 

  • Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda E, Yagi K, Kojima M, et al. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation. 2008;76:495–505.

    Article  CAS  PubMed  Google Scholar 

  • Iohara K, Zheng L, Ito M, et al. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006;24:2493–503.

    Article  CAS  PubMed  Google Scholar 

  • Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17(15-16):1911–20.

    Article  CAS  PubMed  Google Scholar 

  • Ishkitiew N, Yegaki K, Calenic B, et al. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod. 2010;36:469–74.

    Article  Google Scholar 

  • Jiang L, Peng W, Li L, et al. Proliferation and multilineage potential of CXCR4-positive human dental pulp cells in vitro. J Endod. 2012;38:642–7.

    Article  CAS  PubMed  Google Scholar 

  • Jo YY, Lee HJ, Kook SY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.

    Article  CAS  PubMed  Google Scholar 

  • Karamzadeh R, Eslaminejad MB. Dental-related stem cells and their potential in regenerative medicine in regenerative medicine. In: Andrades JA, editor. Tissue engineering and regenerative medicine. Chap. 4, INTECH; Janeza Trdine 9, 51000 Rijeka, Croatia 2013. p. 95–117. http://www.intechopen.com/contact.html

    Google Scholar 

  • Kashyap R. SHED- Basic structure for stem cell research. J Clin Diagn Res. 2015;9(3):E07–9.

    Google Scholar 

  • Kaukua N, Shahidi MK, Konstantinidou C, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–4.

    Article  CAS  PubMed  Google Scholar 

  • Kemoun P, Laurencin-Dalicieux S, Rue J, et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007;329(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Ambrosio CE, Kerkis A, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med. 2008;6:35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lensch MW, Daheron L, Schlaeger TM. Pluripotent stem cells and their niches. Stem Cell Rev. 2006;2:185–201.

    Article  CAS  PubMed  Google Scholar 

  • Leprince JG, Zeitlin BD, Tolar M, et al. Interactions between immune system and mesenchymal stem cells in dental pulp and periapical tissues. Int Endod J. 2012;45(8):689–701.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yu F, Sun Y, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33:627–38.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Suardita K, Ishii M, et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res. 2005;20:399–409.

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Graf D. Cell fate determination during tooth development and regeneration. Birth Defects Res (Part C). 2009;87:199–211.

    Article  CAS  Google Scholar 

  • Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering. Odontology. 2011;99(2):105–11.

    Article  PubMed  Google Scholar 

  • Nakashima M, Iohara K. Regeneration of dental pulp by stem cells. Adv Dent Res. 2011;23(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Iohara K. Mobilized dental pulp stem cells for pulp regeneration: Initiation of clinical trial. J Endod. 2014;40:S26–32.

    Article  PubMed  Google Scholar 

  • Nesti C, Pardini C, Barachini S, et al. Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res. 2011;1367:94–102.

    Article  CAS  PubMed  Google Scholar 

  • Nishino Y, Ebisawa K, Yamada Y, et al. Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. J Craniofac Surg. 2011a;22(2):438–42.

    Article  PubMed  Google Scholar 

  • Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy. 2011b;13(5):598–605.

    Article  CAS  PubMed  Google Scholar 

  • Ong WK, Sugii S. Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol. 2013;45:1083–6.

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Kaur M, Kaur S. Applications of stem cells in interdisciplinary dentistry and beyond: An overview. Ann Med Health Sci Res. 2013;3(2):245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791–6.

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55.

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical-size calvarial defects in mice. Oral Dis. 2008;14(5):428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.

    Google Scholar 

  • Srijaya TC, Pradeep PJ, Zain RB, et al. The promise of human induced pluripotent stem cells in dental research. Stem Cells Int. 2012;423868:10.

    Google Scholar 

  • Syed-Picard FN, Dua Y, Lathrop KL, et al. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Trans Med. 2015;4(3):276–85.

    Article  CAS  Google Scholar 

  • Tamaoki N, Takahashi K, Tanaka T, et al. Dental pulp cells for induced pluripotent stem cell banking. J Dent Res. 2010;89(8):773–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Sun Z, et al. Stem cells from human exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2009;19:1375–83.

    Article  Google Scholar 

  • Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res. 1985;64:530–40.

    Article  PubMed  Google Scholar 

  • Yildirim S. Dental pulp stem cells. Springer briefs in stem cells. London: Springer; 2013. ISSN: 2192-8118.

    Google Scholar 

  • Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation- related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge vice chancellor of University Malaya through High Impact Research MoE grant (UM.C/HIR/MOHE/DENT/01) from the Ministry of Education Malaysia and University of Malaya Research Grant (UMRG RP 19/13HTM) to T.C.S. and N.H.A.K., and intramural funding from the Biomedical Research Council of the Agency for Science, Technology and Research (A*STAR) to S.S., for providing support to work on studies related to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigeki Sugii or Noor Hayaty Abu Kasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srijaya, T.C., Sriram, S., Sugii, S., Kasim, N.H.A. (2016). Stem Cells in Dentistry: Potential Applications and Perspectives in Clinical Research. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_15

Download citation

Publish with us

Policies and ethics