Skip to main content

Vitamin D and Phosphate Interactions in Health and Disease

  • Chapter
  • First Online:
Phosphate Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1362))

Abstract

Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25(OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas MA (2017) Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol 165:369–381

    Article  CAS  PubMed  Google Scholar 

  2. Armbrecht HJ, Boltz MA, Christakos S, Bruns ME (1998) Capacity of 1,25-dihydroxyvitamin D to stimulate expression of calbindin D changes with age in the rat. Arch Biochem Biophys 352:159–164

    Article  CAS  PubMed  Google Scholar 

  3. Avcil S, Uysal P, Yilmaz M, Erge D, Demirkaya SK, Eren E (2017) Vitamin D deficiency and a blunted parathyroid hormone response in children with attention-deficit/hyperactivity disorder. Clin Lab 63:435–443

    Article  CAS  PubMed  Google Scholar 

  4. Belay Y, Yirdaw K, Enawgaw B (2017) Tumor lysis syndrome in patients with hematological malignancies. J Oncol 2017:9684909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  Google Scholar 

  7. Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflugers Arch 458:39–52

    Article  CAS  PubMed  Google Scholar 

  8. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bohnert BN, Daniel C, Amann K, Voelkl J, Alesutan I, Lang F, Heyne N, Häring H-U, Artunc F (2015) Impact of phosphorus restriction and vitamin D-substitution on secondary hyperparathyroidism in a proteinuric mouse model. Kidney Blood Press Res 40:153–165

    Article  CAS  PubMed  Google Scholar 

  10. Boyce AM, Lee AE, Roszko KL, Gafni RI (2020) Hyperphosphatemic Tumoral calcinosis: pathogenesis, clinical presentation, and challenges in management. Front Endocrinol (Lausanne) 11:293

    Article  Google Scholar 

  11. Brown RB, Haq A, Stanford CF, Razzaque MS (2015) Vitamin D, phosphate, and vasculotoxicity. Can J Physiol Pharmacol 93:1077–1082

    Article  CAS  PubMed  Google Scholar 

  12. Buchanan S, Combet E, Stenvinkel P, Shiels PG (2020) Klotho, aging, and the failing kidney. Front Endocrinol (Lausanne) 11:560

    Article  Google Scholar 

  13. Canaff L, Hendy GN (2002) Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem 277:30337–30350

    Article  CAS  PubMed  Google Scholar 

  14. Chapuy MC, Schott AM, Garnero P, Hans D, Delmas PD, Meunier PJ (1996) Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. EPIDOS Study Group. J Clin Endocrinol Metab 81:1129–1133

    CAS  PubMed  Google Scholar 

  15. Charoenngam N, Shirvani A, Holick MF (2019) Vitamin D for skeletal and non-skeletal health: what we should know. J Clin Orthop Trauma 10:1082–1093

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen W, Bushinsky D (2017) Chronic kidney disease–mineral and bone disorder. In: Nissenson, A.R., Fine, R.N.B.T. Handbook of Dialysis Therapy, 5th edn. Elsevier, pp 685–697.e1

    Google Scholar 

  17. Clinkenbeard EL, White KE (2016) Systemic control of bone homeostasis by FGF23 signaling. Curr Mol Biol Rep 2:62–71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coyac BR, Hoac B, Chafey P, Falgayrac G, Slimani L, Rowe PS, Penel G, Linglart A, McKee MD, Chaussain C, Bardet C (2018) Defective mineralization in X-linked hypophosphatemia dental pulp cell cultures. J Dent Res 97:184–191

    Article  CAS  PubMed  Google Scholar 

  19. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E (1993) Renal tubular dysfunction in chronic alcohol abuse–effects of abstinence. N Engl J Med 329:1927–1934

    Article  PubMed  Google Scholar 

  20. Deluca HF (2014) History of the discovery of vitamin D and its active metabolites. Bonekey Rep 3:479

    Article  PubMed  PubMed Central  Google Scholar 

  21. Diez C, Mohr P, Koch D, Silber R-E, Schmid C, Hofmann H-S (2009) Age- and gender-specific values of estimated glomerular filtration rate among 6232 patients undergoing cardiac surgery. Interact Cardiovasc Thorac Surg 9:593–597

    Article  PubMed  Google Scholar 

  22. Drezner MK, Whyte MP (2018) Chapter 40: Heritable renal phosphate wasting disorders. In: Thakker RV, Whyte MP, Eisman JA, Igarashi TBT (eds) Genetics of bone biology and skeletal disease, 2nd edn. Academic, pp 761–782

    Chapter  Google Scholar 

  23. Drüeke TB (2001) Parathyroid gland hyperplasia in uremia. Kidney Int 59:1182–1183

    Article  PubMed  Google Scholar 

  24. Dvm SDF, Moreland KJ (1989) Hypophosphatemia. J Vet Intern Med 3:149–159

    Article  Google Scholar 

  25. Econs MJ (2005) Chapter 70: Disorders of phosphate metabolism: autosomal dominant hypophosphatemic rickets, tumor induced osteomalacia, fibrous dysplasia, and the pathophysiological relevance of FGF23. In: Feldman DBT (ed) Vitamin D, 2nd edn. Academic, Burlington, pp 1189–1195

    Chapter  Google Scholar 

  26. Erem S, Razzaque MS (2018) Dietary phosphate toxicity: an emerging global health concern. Histochem Cell Biol 150:711–719

    Article  CAS  PubMed  Google Scholar 

  27. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217

    Article  PubMed  PubMed Central  Google Scholar 

  28. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Florenzano P, Gafni RI, Collins MT (2017) Tumor-induced osteomalacia. Bone Rep 7:90–97

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fukumoto S (2014) Phosphate metabolism and vitamin D. Bonekey Rep 3:497

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gaasbeek A, Meinders AE (2005) Hypophosphatemia: an update on its etiology and treatment. Am J Med 118:1094–1101

    Article  CAS  PubMed  Google Scholar 

  32. Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, Kuro-o M, Mohammadi M (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A 107:407–412

    Article  CAS  PubMed  Google Scholar 

  33. Goretti Penido M, Alon US (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27:2039–2048

    Article  PubMed  Google Scholar 

  34. Heaney RP (2011) Chapter 34: Vitamin D: role in the calcium and phosphorus economies. In: Feldman D, Pike JW, Adams JSBT (eds) Vitamin D, 3rd edn. Academic, San Diego, pp 607–624

    Chapter  Google Scholar 

  35. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  36. Ikegame M, Ejiri S, Ozawa H (2004) Calcitonin-induced change in serum calcium levels and its relationship to osteoclast morphology and number of calcitonin receptors. Bone 35:27–33

    Article  CAS  PubMed  Google Scholar 

  37. Jacquillet G, Unwin RJ (2019) Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 471:83–98

    Article  CAS  PubMed  Google Scholar 

  38. Kamenický P, Blanchard A, Gauci C, Salenave S, Letierce A, Lombès M, Brailly-Tabard S, Azizi M, Prié D, Souberbielle J-C, Chanson P (2012) Pathophysiology of renal calcium handling in acromegaly: what lies behind hypercalciuria? J Clin Endocrinol Metab 97:2124–2133

    Article  PubMed  Google Scholar 

  39. Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L (2018) The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and Oral health. Biomed Res Int 2018:9276380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khazai N, Judd SE, Tangpricha V (2008) Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep 10:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kilav R, Silver J, Naveh-Many T (1995) Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest 96:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klumpp S, Krieglstein J (2002) Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 269:1067–1071

    Article  CAS  PubMed  Google Scholar 

  43. Korvala J, Hartikka H, Pihlajamäki H, Solovieva S, Ruohola J-P, Sahi T, Barral S, Ott J, Ala-Kokko L, Männikkö M (2010) Genetic predisposition for femoral neck stress fractures in military conscripts. BMC Genet 11:95

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koumakis E, Cormier C, Roux C, Briot K (2021) The causes of hypo- and hyperphosphatemia in humans. Calcif Tissue Int 108:41–73

    Article  CAS  PubMed  Google Scholar 

  45. Lanske B, Razzaque MS (2007) Premature aging in klotho mutant mice: cause or consequence? Ageing Res Rev 6:73–79

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lederer E (2014) Regulation of serum phosphate. J Physiol 592:3985–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leung J, Crook M (2019) Disorders of phosphate metabolism. J Clin Pathol 72:741–747

    Article  CAS  PubMed  Google Scholar 

  48. Levi M (2001) Post-transplant hypophosphatemia. Kidney Int 59:2377–2387

    Article  CAS  PubMed  Google Scholar 

  49. Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    Article  CAS  PubMed  Google Scholar 

  51. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  CAS  PubMed  Google Scholar 

  52. Lofrese JJ, Basit H, Lappin SL (2021) Physiology, parathyroid. Treasure Island (FL)

    Google Scholar 

  53. Magen D, Zelikovic I (2012) Chapter 27: Hereditary tubular disorders of mineral handling. In: Glorieux FH, Pettifor JM, Jüppner HBT (eds) Pediatric bone, 2nd edn. Academic, San Diego, pp 727–770

    Chapter  Google Scholar 

  54. Marik PE, Bedigian MK (1996) Refeeding hypophosphatemia in critically ill patients in an intensive care unit. A prospective study. Arch Surg 131:1043–1047

    Article  CAS  PubMed  Google Scholar 

  55. Marks J (2019) The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Pflugers Arch 471:165–173

    Article  CAS  PubMed  Google Scholar 

  56. Marthi A, Donovan K, Haynes R, Wheeler DC, Baigent C, Rooney CM, Landray MJ, Moe SM, Yang J, Holland L, di Giuseppe R, Bouma-de Krijger A, Mihaylova B, Herrington WG (2018) Fibroblast growth Factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J Am Soc Nephrol 29:2015–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller WL (2017) Genetic disorders of vitamin D biosynthesis and degradation. J Steroid Biochem Mol Biol 165:101–108

    Article  CAS  PubMed  Google Scholar 

  58. Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, Collins MT (2017) Tumour-induced osteomalacia. Nat Rev Dis Prim 3:17044

    Article  PubMed  Google Scholar 

  59. Moe SM, Daoud JR (2014) Chapter 11: Disorders of mineral metabolism: calcium, phosphorus, and magnesium. In: Gilbert SJ, Weiner DE (eds) National Kidney Foundation Primer on Kidney Diseases, 6th edn, Philadelphia, pp 100–112

    Google Scholar 

  60. Muresan Z, MacGregor RR (1994) The release of parathyroid hormone and the exocytosis of a proteoglycan are modulated by extracellular Ca2+ in a similar manner. Mol Biol Cell 5:725–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakatani T, Ohnishi M, Razzaque MS (2009a) Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J 23:3702–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakatani T, Sarraj B, Ohnishi M, Densmore MJ, Taguchi T, Goetz R, Mohammadi M, Lanske B, Razzaque MS (2009b) In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J 23:433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neves RL, Chiarantin GMD, Nascimento FD, Pesquero JB, Nader HB, Tersariol ILS, McKee MD, Carmona AK, Barros NMT (2016) Expression and inactivation of osteopontin-degrading PHEX enzyme in squamous cell carcinoma. Int J Biochem Cell Biol 77:155–164

    Article  CAS  PubMed  Google Scholar 

  64. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24:3562–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohnishi M, Nakatani T, Lanske B, Razzaque MS (2009) In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels. Circ Cardiovasc Genet 2:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Osuka S, Razzaque MS (2012) Can features of phosphate toxicity appear in normophosphatemia? J Bone Miner Metab 30:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peacock M (2015) Chapter 31: Primary hyperparathyroidism and the kidney. In: Bilezikian JPBT (ed) The parathyroids, 3rd edn. Academic, San Diego, pp 455–467

    Chapter  Google Scholar 

  68. Prasad N, Bhadauria D (2013) Renal phosphate handling: physiology. Indian J Endocrinol Metab 17:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pu F, Chen N, Xue S (2016) Calcium intake, calcium homeostasis and health. Food Sci Hum Wellness 5:8–16

    Article  Google Scholar 

  70. Quinn JM, Fujikawa Y, McGee JO, Athanasou NA (1997) Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3. Int J Biochem Cell Biol 29:173–179

    Article  CAS  PubMed  Google Scholar 

  71. Rajakumar K (2003) Vitamin D, cod-liver oil, sunlight, and rickets: a historical perspective. Pediatrics 112:e132–e135

    Article  PubMed  Google Scholar 

  72. Razzaque MS (2009a) FGF23-mediated regulation of systemic phosphate homeostasis: is klotho an essential player? Am J Physiol Renal Physiol 296:F470–F476

    Article  CAS  PubMed  Google Scholar 

  73. Razzaque MS (2009b) Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol Dial Transplant 24:4–7

    Article  PubMed  Google Scholar 

  74. Razzaque MS (2014) Bone-kidney axis in systemic phosphate turnover. Arch Biochem Biophys 561:154–158

    Article  CAS  PubMed  Google Scholar 

  75. Razzaque MS, Lanske B (2006) Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med 12:298–305

    Article  CAS  PubMed  Google Scholar 

  76. Razzaque MS, St-Arnaud R, Taguchi T, Lanske B (2005) FGF-23, vitamin D and calcification: the unholy triad. Nephrol Dial Transplant 20:2032–2035

    Article  CAS  PubMed  Google Scholar 

  77. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 20:720–722

    Article  CAS  PubMed  Google Scholar 

  78. Rigo J, Pieltain C, Viellevoye R, Bagnoli F (2018) Calcium and phosphorus homeostasis: pathophysiology. In: Buonocore G, Bracci R, Weindling M (eds) Neonatology: a practical approach to neonatal diseases. Springer International Publishing, Cham, pp 639–668

    Chapter  Google Scholar 

  79. Ritter CS, Armbrecht HJ, Slatopolsky E, Brown AJ (2006) 25-Hydroxyvitamin D3 suppresses PTH synthesis and secretion by bovine parathyroid cells. Kidney Int 70:654–659

    Article  CAS  PubMed  Google Scholar 

  80. Ritz E, Gross M-L (2005) Hyperphosphatemia in renal failure. Blood Purif 23:6–9

    Article  PubMed  Google Scholar 

  81. Roussanne MC, Lieberherr M, Souberbielle JC, Sarfati E, Drüeke T, Bourdeau A (2001) Human parathyroid cell proliferation in response to calcium, NPS R-467, calcitriol and phosphate. Eur J Clin Investig 31:610–616

    Article  CAS  Google Scholar 

  82. Rudolph EH, Gonin JM (2012) Chapter 79: Disorders of phosphorus metabolism. In: Lerma EV, Nissenson ARBT (eds) Nephrology secrets, 3rd edn. Mosby, Saint Louis, pp 551–559

    Chapter  Google Scholar 

  83. Schiavi SC, Kumar R (2004) The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int 65:1–14

    Article  CAS  PubMed  Google Scholar 

  84. Schmitt A, Ehnert S, Schyschka L, Buschner P, Kühnl A, Döbele S, Siebenlist S, Lucke M, Stöckle U, Nussler AK (2012) Monocytes do not transdifferentiate into proper osteoblasts. Sci World J 2012:384936

    Article  Google Scholar 

  85. Shoback DM, Bilezikian JP, Turner SA, McCary LC, Guo MD, Peacock M (2003) The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J Clin Endocrinol Metab 88:5644–5649

    Article  CAS  PubMed  Google Scholar 

  86. Slatopolsky E, Brown A, Dusso A (2001) Role of phosphorus in the pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 37:S54–S57

    Article  CAS  PubMed  Google Scholar 

  87. Stefanopoulos D, Nasiri-Ansari N, Dontas I, Vryonidou A, Galanos A, Psaridi L, Fatouros IG, Mastorakos G, Papavassiliou AG, Kassi E, Tournis S (2020) Fibroblast growth factor 23 (FGF23) and klotho protein in Beta-thalassemia. Horm Metab Res – Horm und Stoffwechselforsch 52:194–201

    Article  CAS  Google Scholar 

  88. Sun M, Wu X, Yu Y, Wang L, Xie D, Zhang Z, Chen L, Lu A, Zhang G, Li F (2020) Disorders of calcium and phosphorus metabolism and the proteomics/metabolomics-based research. Front Cell Dev Biol 8:576110

    Article  PubMed  PubMed Central  Google Scholar 

  89. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  90. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699

    Article  CAS  PubMed  Google Scholar 

  91. Vogt I, Haffner D, Leifheit-Nestler M (2019) FGF23 and phosphate-cardiovascular toxins in CKD. Toxins (Basel) 11:647

    Article  CAS  Google Scholar 

  92. Voinescu A, Martin KJ (2013) Chapter 19: Calcium, phosphate, PTH, Vitamin D and FGF-23 in chronic kidney disease. In: Kopple JD, Massry SG, Kalantar-Zadeh KBT (eds) Nutritional management of renal disease. Academic, pp 263–283

    Chapter  Google Scholar 

  93. Wald A, Narasimhan S, Nieves-Arriba L, Waggoner S (2009) Prolonged hypercalcemia following resection of dysgerminoma: a case report. Obstet Gynecol Int 2009:956935

    Article  PubMed  PubMed Central  Google Scholar 

  94. White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, Strom TM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    Article  CAS  Google Scholar 

  95. Will A, Tholouli E (2011) The clinical management of tumour lysis syndrome in haematological malignancies. Br J Haematol 154:3–13

    Article  CAS  PubMed  Google Scholar 

  96. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD (2011) Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 25:2418–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamaguchi T, Sugimoto T, Chihara K (2002) Intestinal absorption of phosphate. In: Morii H, Nishizawa Y, Massry SG (eds) Calcium in internal medicine. Springer, London, pp 123–135

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Margo Wolfe for carefully reading the manuscript and providing useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuraly S. Akimbekov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akimbekov, N.S., Digel, I., Sherelkhan, D.K., Razzaque, M.S. (2022). Vitamin D and Phosphate Interactions in Health and Disease. In: Razzaque, M.S. (eds) Phosphate Metabolism . Advances in Experimental Medicine and Biology, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-91623-7_5

Download citation

Publish with us

Policies and ethics