Skip to main content

Advertisement

Log in

Phosphate homeostasis and its role in bone health

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

An Erratum to this article was published on 06 July 2017

Abstract

Phosphate is one of the most abundant minerals in the body, and its serum levels are regulated by a complex set of processes occurring in the intestine, skeleton, and kidneys. The currently known main regulators of phosphate homeostasis include parathyroid hormone (PTH), calcitriol, and a number of peptides collectively known as the “phosphatonins” of which fibroblast growth factor-23 (FGF-23) has been best defined. Maintenance of extracellular and intracellular phosphate levels within a narrow range is important for many biological processes, including energy metabolism, cell signaling, regulation of protein synthesis, skeletal development, and bone integrity. The presence of adequate amounts of phosphate is critical for the process of apoptosis of mature chondrocytes in the growth plate. Without the presence of this mineral in high enough quantities, chondrocytes will not go into apoptosis, and the normal physiological chain of events that includes invasion of blood vessels and the generation of new bone will be blocked, resulting in rickets and delayed growth. In the rest of the skeleton, hypophosphatemia will result in osteomalacia due to an insufficient formation of hydroxyapatite. This review will address phosphate metabolism and its role in bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Marks J, Edward S, Debnam ES, Unwi RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299:F285–F296

    Article  PubMed  CAS  Google Scholar 

  2. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 104:11085–11090

    Article  PubMed  CAS  Google Scholar 

  3. Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 23:1203–1210

    Article  PubMed  Google Scholar 

  4. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem SY, Barry N, Blaine J, Jiang T, Wang XX, Levi M (2009) Regulation of the rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297:F1466–F1475

    Article  PubMed  CAS  Google Scholar 

  5. Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N (2010) Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflügers Arch 460:201–217

    Article  Google Scholar 

  6. Ramon I, Kleynen P, Jean-Jacques Body J, Karmali R (2010) Fibroblast growth factor 23 and its role in phosphate homeostasis. Eur J Endocrinol 162:1–10

    Article  PubMed  CAS  Google Scholar 

  7. Gattineni J, Baum M (2010) Regulation of phosphate transport by fibroblast growth factor 23 (FGF-23): implications for disorders of phosphate metabolism. Pediatr Nephrol 25:591–601

    Article  PubMed  Google Scholar 

  8. Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2:136–148

    Article  PubMed  CAS  Google Scholar 

  9. Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401

    Article  PubMed  Google Scholar 

  10. Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289:F1170–F1182

    Article  PubMed  CAS  Google Scholar 

  11. Alizadeh Naderi AS, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665

    Article  PubMed  CAS  Google Scholar 

  12. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217

    Article  PubMed  Google Scholar 

  13. Bergwitz C, Huppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D and FGF-23. Annu Rev Med 61:91–104

    Article  PubMed  CAS  Google Scholar 

  14. Alon US (2011) Clinical practice: Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr 170:545–554

    Article  PubMed  CAS  Google Scholar 

  15. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 282:C487–C493

    PubMed  CAS  Google Scholar 

  16. Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type IIa Na/phosphate cotransporter. Annu Rev Nutr 25:197–214

    Article  PubMed  CAS  Google Scholar 

  17. Wesseling-Perry K (2010) FGF-23 in bone biology. Pediatr Nephrol 25:603–608

    Article  PubMed  Google Scholar 

  18. Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK (2001) Regulation of the human sodium-phosphate cotransporter NaPi-IIb gene promoter by epidermal growth factor. Am J Physiol Cell Physiol 280:C628–C636

    PubMed  CAS  Google Scholar 

  19. Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK (2002) Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 283:G426–G434

    PubMed  CAS  Google Scholar 

  20. Xu H, Uno JK, Inouye M, Xu L, Drees JB, Collins JF, Ghishan FK (2003) Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol 285:G1317–G1324

    PubMed  CAS  Google Scholar 

  21. Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J (2005) Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na+−dependent phosphate absorption and expression of the Na+−Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–G506

    Article  PubMed  CAS  Google Scholar 

  22. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflügers Arch 447:763–767

    Article  PubMed  CAS  Google Scholar 

  23. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47

    Article  PubMed  CAS  Google Scholar 

  24. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1 OHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434

    Article  PubMed  CAS  Google Scholar 

  25. Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18:1430–1442

    Article  PubMed  CAS  Google Scholar 

  26. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149

    Article  PubMed  CAS  Google Scholar 

  27. Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503

    Article  PubMed  CAS  Google Scholar 

  28. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+−Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699

    Article  PubMed  CAS  Google Scholar 

  29. Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflügers Arch 458:39–52

    Article  PubMed  CAS  Google Scholar 

  30. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/P i cotransporter. J Biol Chem 277:19665–19672

    Article  PubMed  CAS  Google Scholar 

  31. Prie D, Urena TP, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75:882–889

    Article  PubMed  CAS  Google Scholar 

  32. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288:F587–F596

    Article  PubMed  CAS  Google Scholar 

  33. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113

    Article  PubMed  CAS  Google Scholar 

  34. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  PubMed  CAS  Google Scholar 

  35. Villa-Bellosta R, Sorribas V (2010) Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflügers Arch 459:499–508

    Article  PubMed  CAS  Google Scholar 

  36. Silver J, Naveh-Many T (2010) FGF-23 and the parathyroid glands. Pediatr Nephrol 25:2241–2245

    Article  PubMed  Google Scholar 

  37. Kuro-o M (2010) Overview of the FGF-23 -Klotho axis. Pediatr Nephrol 25:583–590

    Article  PubMed  Google Scholar 

  38. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of FGF-23 in Hyp mice. Am J Physiol Endocrinol Metab 291:38–49

    Article  Google Scholar 

  39. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1 α,25-Dihydroxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  PubMed  CAS  Google Scholar 

  40. Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF-23. Bone 40:1565–1573

    Article  PubMed  CAS  Google Scholar 

  41. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of FGF-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  42. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  43. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF-23 actions in regulation phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–F1095

    Article  PubMed  CAS  Google Scholar 

  44. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948

    Article  PubMed  CAS  Google Scholar 

  45. Hunter WL, Arsenault AL, Hodsman AB (1991) Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec 229:453–461

    Article  PubMed  CAS  Google Scholar 

  46. Chang W, Tu C, Pratt S, Chen TH, Shoback D (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474

    Article  PubMed  CAS  Google Scholar 

  47. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642

    Article  PubMed  CAS  Google Scholar 

  48. Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396

    Article  PubMed  CAS  Google Scholar 

  49. Dardenne O, Prud’homme J, Glorieux FH, St-Arnaud R (2007) Rescue of the phenotype of CYP27B1 (1alpha-hydroxylase)-deficient mice. J Steroid Biochem Mol Biol 89–90:327–330

    Google Scholar 

  50. Miedlich SU, Zalutskaya A, Zhu ED, Demay MB (2010) Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem 285:18270–18275

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri S. Alon.

Additional information

Answers:

A, 3; B, 2; C, 3; D, 1; E, 3.

An erratum to this article is available at http://dx.doi.org/10.1007/s00467-017-3713-5.

Questions (answers are provided following the reference list)

Questions (answers are provided following the reference list)

  1. A.

    Phosphate transport in the intestine is accomplished by:

  2. 1.

    NaPi-IIa (SLC34A1)

  3. 2.

    NaPi-IIc (SLC34A3)

  4. 3.

    NaPi-IIb (SLC34A2)

  5. 4.

    All of them

  6. B.

    The role of phosphate in growth plate physiology involves:

    1. 1.

      Chondrocyte proliferation

    2. 2.

      Hypertrophic chondrocyte apoptosis

    3. 3.

      Accumulation of osteoid

    4. 4.

      Vascular maturation

  7. C.

    The more important regulator of phosphorus transporter in the gut is:

  8. 1.

    PTH

  9. 2.

    Dietary phosphate

  10. 3.

    1,25(OH)2D3

  11. 4.

    Phosphatonins

  12. D.

    The main P transporters in the kidney are:

  13. 1.

    NaPiIIa and NaPiIIc

  14. 2.

    NaPiIIa and NaPiIIb

  15. 3.

    NaPiIIb and NaPiIIc

  16. 4.

    FGF-23

  17. E.

    What is not true regarding FGF-23:

  18. 1.

    It needs the cofactor Klotho to exert its effect

  19. 2.

    It diminishes the production of calcitriol

  20. 3.

    It increases secretion of PTH

  21. 4.

    Increased oral phosphate intake increases serum levels of FGF-23

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penido, M.G.M.G., Alon, U.S. Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27, 2039–2048 (2012). https://doi.org/10.1007/s00467-012-2175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2175-z

Keywords

Navigation