Skip to main content

Amniotic Membrane: A Unique Combination of Stem-Like Cells, Extracellular Matrix with Indispensable Potential for Regenerative Medicine

  • Chapter
  • First Online:
Stem Cells in Reproductive Tissues and Organs

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 70))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

Cdk4:

Cyclin-dependent kinase 4

DPPA3:

Developmental pluripotency-associated protein 3

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

hAEC:

Human amniotic membrane epithelial cells

hAM:

Human amniotic membrane

hAMSC:

Human amniotic membrane mesenchymal stromal cells

HGF:

Hepatocyte growth factor

HGFR:

Hepatocyte growth factor receptor

HLA:

Human leukocyte antigen

hPAM:

Human placental amniotic membrane

hRAM:

Human reflected amniotic membrane

hUC-AM:

Human umbilical cord amniotic membrane

IL-1:

Interleukin 1

KGF:

Keratinocyte growth factor

KLF-4:

Kruppel-like factor-4

MHC:

Major histocompatibility complex

MIG:

Monokine induced by gamma interferon

MIP1α:

Macrophage inflammatory protein 1α

OCT-4:

Octamer-binding protein 4

PBMC:

Peripheral blood mononuclear cells

PDGF:

Platelet-derived growth factor

PEDF:

Pigment epithelium-derived factor

PROM1:

Prominin 1

SOX-2:

Sex-determining region Y (SRY)-related HMG-box gene 2

SSEA-3:

Stage-specific embryonic antigens 3

TDGF-1:

Teratocarcinoma-derived growth factor 1

TGFα:

Transforming growth factor α

TGFβ:

Transforming growth factor β

Th1:

T helper 1 cell

TIMP:

Tissue inhibitor of metalloproteinases

TRA1-60:

Tumor rejection antigens

VEGF:

Vascular endothelial growth factor

References

  1. Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018:2495848. https://doi.org/10.1155/2018/2495848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wassmer C-H, Berishvili E (2020) Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Curr Diab Rep 20:31. https://doi.org/10.1007/s11892-020-01316-w

    Article  PubMed  PubMed Central  Google Scholar 

  3. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, Rothblatt M, Boyden ES, Eidbo E, Lee WPA, Pomahac B, Brandacher G, Weinstock DM, Elliott G, Nelson D, Acker JP, Uygun K, Schmalz B, Weegman BP, Tocchio A, Fahy GM, Storey KB, Rubinsky B, Bischof J, Elliott JAW, Woodruff TK, Morris GJ, Demirci U, Brockbank KGM, Woods EJ, Ben RN, Baust JG, Gao D, Fuller B, Rabin Y, Kravitz DC, Taylor MJ, Toner M (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35:530–542. https://doi.org/10.1038/nbt.3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112:14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atala A (2012) Regenerative medicine strategies. J Pediatr Surg 47:17–28. https://doi.org/10.1016/j.jpedsurg.2011.10.013

    Article  PubMed  Google Scholar 

  6. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta derived stem cells. Stem Cells 26:300–311. https://doi.org/10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  7. Ramuta TŽ, Kreft ME (2018) Human amniotic membrane and amniotic membrane-derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant 27:77–92. https://doi.org/10.1177/0963689717725528

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han YM, Romero R, Kim J-S, Tarca AL, Kim SK, Draghici S, Kusanovic JP, Gotsch F, Mittal P, Hassan SS, Kim CJ (2008) Region-specific gene expression profiling: novel evidence for biological heterogeneity of the human amnion. Biol Reprod 79:954–961. https://doi.org/10.1095/biolreprod.108.069260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SY, Romero R, Tarca AL, Bhatti G, Lee J, Chaiworapongsa T, Hassan SS, Kim CJ (2011) miR-143 regulation of prostaglandin-endoperoxidase synthase 2 in the amnion: implications for human parturition at term. PloS One 6:e24131. https://doi.org/10.1371/journal.pone.0024131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Centurione L, Passaretta F, Centurione MA, Munari SD, Vertua E, Silini A, Liberati M, Parolini O, Di Pietro R (2018) Mapping of the human placenta: experimental evidence of amniotic epithelial cell heterogeneity. Cell Transplant 27:12–22, https://doi.org/10.1177/0963689717725078

  11. Banerjee A, Weidinger A, Hofer M, Steinborn R, Lindenmair A, Hennerbichler-Lugscheider S, Eibl J, Redl H, Kozlov AV, Wolbank S (2015) Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 36:1329–1332. https://doi.org/10.1016/j.placenta.2015.08.015

    Article  PubMed  Google Scholar 

  12. Banerjee A, Lindenmair A, Hennerbichler S, Steindorf P, Steinborn R, Kozlov AV, Redl H, Wolbank S, Weidinger A (2018) Cellular and site-specific mitochondrial characterization of vital human amniotic membrane. Cell Transplant 27:3–11. https://doi.org/10.1177/0963689717735332

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559. https://doi.org/10.1634/stemcells.2004-0357

    Article  CAS  PubMed  Google Scholar 

  14. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673. https://doi.org/10.1016/j.ajog.2006.01.101

    Article  CAS  PubMed  Google Scholar 

  15. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183. https://doi.org/10.1089/ten.2006.0313

  16. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588. https://doi.org/10.1095/biolreprod.106.055244

    Article  CAS  PubMed  Google Scholar 

  17. Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17:955–968. https://doi.org/10.3727/096368908786576507

    Article  PubMed  Google Scholar 

  18. Stadler G, Hennerbichler S, Lindenmair A, Peterbauer A, Hofer K, van Griensven M, Gabriel C, Redl H, Wolbank S (2008) Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 10:743–752. https://doi.org/10.1080/14653240802345804

  19. Evron A, Goldman S, Shalev E (2011) Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages. Int J Stem Cells 4:123–132. https://doi.org/10.15283/ijsc.2011.4.2.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bryzek A, Czekaj P, Plewka D, Komarska H, Tomsia M, Lesiak M, Sieroń AL, Sikora J, Kopaczka K (2013) Expression and co-expression of surface markers of pluripotency on human amniotic cells cultured in different growth media. Ginekol Pol 84:1012–1024. https://doi.org/10.17772/gp/1673

    Article  PubMed  Google Scholar 

  21. García-Castro IL, García-López G, Ávila-González D, Flores-Herrera H, Molina-Hernández A, Portillo W, Ramón-Gallegos E, Díaz NF (2015) Markers of pluripotency in human amniotic epithelial cells and their differentiation to progenitor of cortical neurons. PLoS One 10:e0146082. https://doi.org/10.1371/journal.pone.0146082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Resca E, Zavatti M, Maraldi T, Bertoni L, Beretti F, Guida M, La Sala GB, Guillot PV, David AL, Sebire NJ, De Pol A, De Coppi P (2015) Enrichment in c-Kit improved differentiation potential of amniotic membrane progenitor/stem cells. Placenta 36:18–26. https://doi.org/10.1016/j.placenta.2014.11.002

  23. Ding C, Li H, Wang Y, Wang F, Wu H, Chen R, Lv J, Wang W, Huang B (2017) Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics. Stem Cell Res Ther 8:173. https://doi.org/10.1186/s13287-017-0613-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang L-W, Chen H, Lu H (2016) Using human epithelial amnion cells in human de-epidermized dermis for skin regeneration. J Dermatol Sci 81:26–34. https://doi.org/10.1016/j.jdermsci.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  25. Maymó JL, Riedel R, Pérez-Pérez A, Magatti M, Maskin B, Dueñas JL, Parolini O, Sánchez-Margalet V, Varone CL (2018) Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PloS One 13:e0191489. https://doi.org/10.1371/journal.pone.0191489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simat SF, Chua KH, Abdul Rahman H, Tan AE, Tan GC (2008) The stemness gene expression of cultured human amniotic epithelial cells in serial passages. Med J Malaysia 63 Suppl A:53–54

    Google Scholar 

  27. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L (2008) Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 29:603–611. https://doi.org/10.1097/SHK.0b013e318157e845

    Article  CAS  PubMed  Google Scholar 

  28. Zhou K, Koike C, Yoshida T, Okabe M, Fathy M, Kyo S, Kiyono T, Saito S, Nikaido T (2013) Establishment and characterization of immortalized human amniotic epithelial cells. Cell Reprogramm 15:55–67. https://doi.org/10.1089/cell.2012.0021

    Article  CAS  Google Scholar 

  29. Kim M-S, Yu JH, Lee M-Y, Kim AL, Jo MH, Kim M, Cho S-R, Kim Y-H (2016) Differential expression of extracellular matrix and adhesion molecules in fetal-origin amniotic epithelial cells of preeclamptic pregnancy. PLoS One 11:e0156038. https://doi.org/10.1371/journal.pone.0156038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou G, Liu T, Guo L, Huang Y, Feng Y, Duan T (2018) MicroRNA-32 silences WWP2 expression to maintain the pluripotency of human amniotic epithelial stem cells and β islet-like cell differentiation. Int J Mol Med 41:1983–1991. https://doi.org/10.3892/ijmm.2018.3436

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75:91–96. https://doi.org/10.1016/j.jri.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  32. Izumi M, Pazin BJ, Minervini CF, Gerlach J, Ross MA, Stolz DB, Turner ME, Thompson RL, Miki T (2009) Quantitative comparison of stem cell marker-positive cells in fetal and term human amnion. J Reprod Immunol 81:39–43. https://doi.org/10.1016/j.jri.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  33. Miki T (2018) Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol 80:e13003. https://doi.org/10.1111/aji.13003

    Article  CAS  PubMed  Google Scholar 

  34. Cargnoni A, Di Marcello M, Campagnol M, Nassuato C, Albertini A, Parolini O (2009) Amniotic membrane patching promotes ischemic rat heart repair. Cell Transplant 18:1147–1159. https://doi.org/10.3727/096368909X12483162196764

  35. Kakishita K, Nakao N, Sakuragawa N, Itakura T (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56. https://doi.org/10.1016/s0006-8993(03)02875-0

    Article  CAS  PubMed  Google Scholar 

  36. Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, Suzuki S (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 45:171–176. https://doi.org/10.1007/s100380050205

    Article  CAS  PubMed  Google Scholar 

  37. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84. https://doi.org/10.1247/csf.29.73

    Article  CAS  PubMed  Google Scholar 

  38. Strom SC, Bruzzone P, Cai H, Ellis E, Lehmann T, Mitamura K, Miki T (2006) Hepatocyte transplantation: clinical experience and potential for future use. Cell Transplant 15(Suppl 1):S105-110. https://doi.org/10.3727/000000006783982395

    Article  PubMed  Google Scholar 

  39. Miki T, Marongiu F, Ellis ECS, Dorko K, Mitamura K, Ranade A, Gramignoli R, Davila J, Strom SC (2009) Production of hepatocyte-like cells from human amnion. Methods Mol Biol 481:155–168. https://doi.org/10.1007/978-1-59745-201-4_13

    Article  CAS  PubMed  Google Scholar 

  40. Zhou J, Yu G, Cao C, Pang J, Chen X (2011) Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells. Int Orthop 35:941–948. https://doi.org/10.1007/s00264-010-1116-3

    Article  PubMed  Google Scholar 

  41. Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, Kobayashi M, Yokoyama Y (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78:208–214. https://doi.org/10.1002/jnr.20257

    Article  CAS  PubMed  Google Scholar 

  42. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17. https://doi.org/10.1016/s0306-4522(02)00929-6

    Article  CAS  PubMed  Google Scholar 

  43. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34. https://doi.org/10.1006/exnr.2000.7449

    Article  CAS  PubMed  Google Scholar 

  44. Elwan MA, Sakuragawa N (1997) Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport 8:3435–3438. https://doi.org/10.1097/00001756-199711100-00004

    Article  CAS  PubMed  Google Scholar 

  45. Carbone A, Paracchini V, Castellani S, Di Gioia S, Seia M, Colombo C, Conese M (2014) Human amnion-derived cells: prospects for the treatment of lung diseases. Curr Stem Cell Res Ther 9:297–305. https://doi.org/10.2174/1574888x0904140429142451

  46. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552. https://doi.org/10.3727/000000003108747000

    Article  PubMed  Google Scholar 

  47. Díaz-Prado S, Rendal-Vázquez ME, Muiños-López E, Hermida-Gómez T, Rodríguez-Cabarcos M, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010) Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell Tissue Bank 11:183–195. https://doi.org/10.1007/s10561-009-9144-1

  48. Koike C, Zhou K, Takeda Y, Fathy M, Okabe M, Yoshida T, Nakamura Y, Kato Y, Nikaido T (2014) Characterization of amniotic stem cells. Cell Reprogramm 16:298–305. https://doi.org/10.1089/cell.2013.0090

    Article  CAS  Google Scholar 

  49. Tabatabaei M, Mosaffa N, Nikoo S, Bozorgmehr M, Ghods R, Kazemnejad S, Rezania S, Keshavarzi B, Arefi S, Ramezani-Tehrani F, Mirzadegan E, Zarnani A-H (2014) Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin. Avicenna J Med Biotechnol 6:10–20

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu S-C, Xu Y-Y, Li Y, Xu B, Sun Q, Li F, Zhang X-G (2015) Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells. Eur Rev Med Pharmacol Sci 19:4627–4635

    PubMed  Google Scholar 

  51. Roy R, Kukucka M, Messroghli D, Kunkel D, Brodarac A, Klose K, Geißler S, Becher PM, Kang SK, Choi Y-H, Stamm C (2015) Epithelial-to-mesenchymal transition enhances the cardioprotective capacity of human amniotic epithelial cells. Cell Transplant 24:985–1002. https://doi.org/10.3727/096368913X675151

    Article  PubMed  Google Scholar 

  52. Topoluk N, Hawkins R, Tokish J, Mercuri J (2017) Amniotic mesenchymal stromal cells exhibit preferential osteogenic and chondrogenic differentiation and enhanced matrix production compared with adipose mesenchymal stromal cells. Am J Sports Med 45:2637–2646. https://doi.org/10.1177/0363546517706138

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, Murthi P, Gargett C, Manuelpillai U (2011) Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 6:e26136. https://doi.org/10.1371/journal.pone.0026136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

  55. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99. https://doi.org/10.22203/ecm.v015a07

    Article  CAS  PubMed  Google Scholar 

  56. Lee P-H, Tu C-T, Hsiao C-C, Tsai M-S, Ho C-M, Cheng N-C, Hung T-M, Shih DT-B (2016) Antifibrotic activity of human placental amnion membrane-derived CD34+ mesenchymal stem/progenitor cell transplantation in mice with thioacetamide-induced liver injury. Stem Cells Transl Med 5:1473–1484. https://doi.org/10.5966/sctm.2015-0343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305. https://doi.org/10.1002/term.40

    Article  CAS  PubMed  Google Scholar 

  58. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11. https://doi.org/10.1186/1471-213X-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535. https://doi.org/10.1097/01.tp.0000149503.92433.39

    Article  PubMed  Google Scholar 

  60. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, Kang SG, Yang HS, You J (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9:581–594. https://doi.org/10.1089/clo.2007.0027

    Article  CAS  PubMed  Google Scholar 

  61. Iaffaldano L, Nardelli C, Raia M, Mariotti E, Ferrigno M, Quaglia F, Labruna G, Capobianco V, Capone A, Maruotti GM, Pastore L, Di Noto R, Martinelli P, Sacchetti L, Del Vecchio L (2013) High aminopeptidase N/CD13 levels characterize human amniotic mesenchymal stem cells and drive their increased adipogenic potential in obese women. Stem Cells Dev 22:2287–2297. https://doi.org/10.1089/scd.2012.0499

  62. Battula VL, Treml S, Abele H, Bühring H-J (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differ Res Biol Divers 76:326–336. https://doi.org/10.1111/j.1432-0436.2007.00225.x

    Article  CAS  Google Scholar 

  63. Nogami M, Tsuno H, Koike C, Okabe M, Yoshida T, Seki S, Matsui Y, Kimura T, Nikaido T (2012) Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 93:1221–1228. https://doi.org/10.1097/TP.0b013e3182529b76

    Article  CAS  PubMed  Google Scholar 

  64. Ghamari S-H, Abbasi-Kangevari M, Tayebi T, Bahrami S, Niknejad H (2020) The bottlenecks in translating placenta-derived amniotic epithelial and mesenchymal stromal cells into the clinic: current discrepancies in marker reports. Front Bioeng Biotechnol 8:180. https://doi.org/10.3389/fbioe.2020.00180

    Article  PubMed  PubMed Central  Google Scholar 

  65. Roubelakis M, Trohatou O, Anagnou N (2012) Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int 2012:107836. https://doi.org/10.1155/2012/107836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Magatti M, Pianta S, Silini A, Parolini O (2016) Isolation, culture, and phenotypic characterization of mesenchymal stromal cells from the amniotic membrane of the human term placenta. Methods Mol Biol 1416:233–244. https://doi.org/10.1007/978-1-4939-3584-0_13

    Article  CAS  PubMed  Google Scholar 

  67. Wei JP, Nawata M, Wakitani S, Kametani K, Ota M, Toda A, Konishi I, Ebara S, Nikaido T (2009) Human amniotic mesenchymal cells differentiate into chondrocytes. Clon Stem Cells 11:19–26. https://doi.org/10.1089/clo.2008.0027

    Article  CAS  Google Scholar 

  68. Naseer N, Bashir S, Latief N, Latif F, Khan SN, Riazuddin S (2018) Human amniotic membrane as differentiating matrix for in vitro chondrogenesis. Regen Med 13:821–832. https://doi.org/10.2217/rme-2018-0017

    Article  CAS  PubMed  Google Scholar 

  69. Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, Perbellini A (2007) Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282:14243–14252. https://doi.org/10.1074/jbc.M609350200

    Article  CAS  PubMed  Google Scholar 

  70. Arrizabalaga JH, Nollert MU (2018) Human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomater Sci Eng 4:2226–2236. https://doi.org/10.1021/acsbiomaterials.8b00015

    Article  CAS  PubMed  Google Scholar 

  71. Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME (2014) Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 15:177–192. https://doi.org/10.1007/s10561-013-9417-6

    Article  CAS  PubMed  Google Scholar 

  72. Parry S, Strauss JF (1998) Premature rupture of the fetal membranes. N Engl J Med 338:663–670. https://doi.org/10.1056/NEJM199803053381006

    Article  CAS  PubMed  Google Scholar 

  73. Lei J, Priddy LB, Lim JJ, Massee M, Koob TJ (2017) Identification of extracellular matrix components and biological factors in micronized dehydrated human amnion/chorion membrane. Adv Wound Care 6:43–53. https://doi.org/10.1089/wound.2016.0699

    Article  Google Scholar 

  74. Meinert M, Eriksen GV, Petersen AC, Helmig RB, Laurent C, Uldbjerg N, Malmström A (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184:679–685. https://doi.org/10.1067/mob.2001.110294

    Article  CAS  PubMed  Google Scholar 

  75. Takashima S, Yasuo M, Sanzen N, Sekiguchi K, Okabe M, Yoshida T, Toda A, Nikaido T (2008) Characterization of laminin isoforms in human amnion. Tissue Cell 40:75–81. https://doi.org/10.1016/j.tice.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  76. Malak TM, Ockleford CD, Bell SC, Dalgleish R, Bright N, Macvicar J (1993) Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14:385–406. https://doi.org/10.1016/s0143-4004(05)80460-6

    Article  CAS  PubMed  Google Scholar 

  77. Alitalo K, Kurkinen M, Vaheri A, Krieg T, Timpl R (1980) Extracellular matrix components synthesized by human amniotic epithelial cells in culture. Cell 19:1053–1062. https://doi.org/10.1016/0092-8674(80)90096-3

    Article  CAS  PubMed  Google Scholar 

  78. Hieber AD, Corcino D, Motosue J, Sandberg LB, Roos PJ, Yu SY, Csiszar K, Kagan HM, Boyd CD, Bryant-Greenwood GD (1997) Detection of elastin in the human fetal membranes: proposed molecular basis for elasticity. Placenta 18:301–312. https://doi.org/10.1016/s0143-4004(97)80065-3

    Article  CAS  PubMed  Google Scholar 

  79. Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16:33–40. https://doi.org/10.1016/j.jcyt.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  80. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    CAS  PubMed  Google Scholar 

  81. Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O (2018) The immunomodulatory properties of amniotic cells: the two sides of the coin. Cell Transplant 27:31–44. https://doi.org/10.1177/0963689717742819

    Article  PubMed  PubMed Central  Google Scholar 

  82. Olczyk P, Mencner Ł, Komosinska-Vassev K (2014) The role of the extracellular matrix components in cutaneous wound healing. BioMed Res Int 2014:747584. https://doi.org/10.1155/2014/747584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S-34S. https://doi.org/10.1097/01.prs.0000225430.42531.c2

    Article  CAS  PubMed  Google Scholar 

  84. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  CAS  PubMed  Google Scholar 

  85. Jin E, Kim T-H, Han S, Kim S-W (2016) Amniotic epithelial cells promote wound healing in mice through high epithelialization and engraftment. J Tissue Eng Regen Med 10:613–622. https://doi.org/10.1002/term.2069

    Article  CAS  PubMed  Google Scholar 

  86. Gicquel J-J, Dua HS, Brodie A, Mohammed I, Suleman H, Lazutina E, James DK, Hopkinson A (2009) Epidermal growth factor variations in amniotic membrane used for ex vivo tissue constructs. Tissue Eng Part A 15:1919–1927. https://doi.org/10.1089/ten.tea.2008.0432

    Article  CAS  PubMed  Google Scholar 

  87. Hodde JP, Johnson CE (2007) Extracellular matrix as a strategy for treating chronic wounds. Am J Clin Dermatol 8:61–66. https://doi.org/10.2165/00128071-200708020-00001

    Article  PubMed  Google Scholar 

  88. Insausti CL, Alcaraz A, García-Vizcaíno EM, Mrowiec A, López-Martínez MC, Blanquer M, Piñero A, Majado MJ, Moraleda JM, Castellanos G, Nicolás FJ (2010) Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 18:368–377. https://doi.org/10.1111/j.1524-475X.2010.00604.x

    Article  Google Scholar 

  89. Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225. https://doi.org/10.1016/j.biomaterials.2009.09.034

    Article  CAS  PubMed  Google Scholar 

  90. Rahman MS, Islam R, Rana MM, Spitzhorn L-S, Rahman MS, Adjaye J, Asaduzzaman SM (2019) Characterization of burn wound healing gel prepared from human amniotic membrane and Aloe vera extract. BMC Complement Altern Med 19:115. https://doi.org/10.1186/s12906-019-2525-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rana MM, Rahman MS, Ullah MA, Siddika A, Hossain ML, Akhter MS, Hasan MZ, Asaduzzaman SM (2020) Amnion and collagen-based blended hydrogel improves burn healing efficacy on a rat skin wound model in the presence of wound dressing biomembrane. Biomed Mater Eng 31:1–17. https://doi.org/10.3233/BME-201076

    Article  CAS  PubMed  Google Scholar 

  92. Jones RE, Foster DS, Hu MS, Longaker MT (2019) Wound healing and fibrosis: current stem cell therapies. Transfusion (Paris) 59:884–892. https://doi.org/10.1111/trf.14836

    Article  Google Scholar 

  93. White ES, Mantovani AR (2013) Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol 229:141–144. https://doi.org/10.1002/path.4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203. https://doi.org/10.1242/dmm.012062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koh JW, Shin YJ, Oh JY, Kim MK, Ko JH, Hwang JM, Wee WR, Lee JH (2007) The expression of TIMPs in cryo-preserved and freeze-dried amniotic membrane. Curr Eye Res 32:611–616. https://doi.org/10.1080/02713680701459441

    Article  CAS  PubMed  Google Scholar 

  96. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352. https://doi.org/10.1097/00003226-200005000-00018

    Article  CAS  PubMed  Google Scholar 

  97. Rowe TF, King LA, MacDonald PC, Casey ML (1997) Tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 expression in human amnion mesenchymal and epithelial cells. Am J Obstet Gynecol 176:915–921. https://doi.org/10.1016/s0002-9378(97)70621-5

    Article  CAS  PubMed  Google Scholar 

  98. Riley SC, Leask R, Denison FC, Wisely K, Calder AA, Howe DC (1999) Secretion of tissue inhibitors of matrix metalloproteinases by human fetal membranes, decidua and placenta at parturition. J Endocrinol 162:351–359. https://doi.org/10.1677/joe.0.1620351

    Article  CAS  PubMed  Google Scholar 

  99. SantAnna LB, Hage R, Cardoso MAG, Arisawa EAL, Cruz MM, Parolini O, Cargnoni A, SantAnna N (2016) Antifibrotic effects of human amniotic membrane transplantation in established biliary fibrosis induced in rats. Cell Transplant 25:2245–2257. https://doi.org/10.3727/096368916X692645

    Article  PubMed  Google Scholar 

  100. Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335. https://doi.org/10.1002/(SICI)1097-4652(199906)179:3%3c325::AID-JCP10%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  101. Solomon A, Wajngarten M, Alviano F, Anteby I, Elchalal U, Pe’er J, Levi-Schaffer F (2005) Suppression of inflammatory and fibrotic responses in allergic inflammation by the amniotic membrane stromal matrix. Clin Exp Allergy J Br Soc Allergy Clin Immunol 35:941–948. https://doi.org/10.1111/j.1365-2222.2005.02285.x

  102. Tseng SCG, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H, Liu T-S, Cho T-H, Gao Y-Y, Yeh L-K, Liu C-Y (2004) How does amniotic membrane work? Ocul Surf 2:177–187. https://doi.org/10.1016/s1542-0124(12)70059-9

  103. Hortensius RA, Ebens JH, Harley BAC (2016) Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. J Biomed Mater Res A 104:1332–1342. https://doi.org/10.1002/jbm.a.35663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolbank S, Hildner F, Redl H, van Griensven M, Gabriel C, Hennerbichler S (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3:651–654. https://doi.org/10.1002/term.207

  105. Burgos H (1986) Angiogenic factor from human term placenta. Purification and partial characterization. Eur J Clin Invest 16:486–493. https://doi.org/10.1111/j.1365-2362.1986.tb02166.x

    Article  CAS  PubMed  Google Scholar 

  106. Niknejad H, Paeini-Vayghan G, Tehrani FA, Khayat-Khoei M, Peirovi H (2013) Side dependent effects of the human amnion on angiogenesis. Placenta 34:340–345. https://doi.org/10.1016/j.placenta.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  107. Koob TJ, Lim JJ, Massee M, Zabek N, Denozière G (2014) Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater 102:1353–1362. https://doi.org/10.1002/jbm.b.33141

    Article  CAS  PubMed  Google Scholar 

  108. Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, Pisano F, Mura M, Kleijn L, de Boer RA, Viarengo G, Rosti V, Spinillo A, Roccio M, Gnecchi M (2015) Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med 4:448–458. https://doi.org/10.5966/sctm.2014-0253

  109. Nasiry D, Khalatbary AR, Abdollahifar M-A, Amini A, Bayat M, Noori A, Piryaei A (2020) Engraftment of bioengineered three-dimensional scaffold from human amniotic membrane-derived extracellular matrix accelerates ischemic diabetic wound healing. Arch Dermatol Res. https://doi.org/10.1007/s00403-020-02137-3

    Article  PubMed  Google Scholar 

  110. Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, Parolini O (2015) Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant 24:1733–1752. https://doi.org/10.3727/096368914X684033

  111. Banas RA, Trumpower C, Bentlejewski C, Marshall V, Sing G, Zeevi A (2008) Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol 69:321–328. https://doi.org/10.1016/j.humimm.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  112. Houlihan JM, Biro PA, Harper HM, Jenkinson HJ, Holmes CH (1995) The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol 154:5665–5674

    CAS  PubMed  Google Scholar 

  113. Insausti CL, Blanquer M, García-Hernández AM, Castellanos G, Moraleda JM (2014) Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning Adv Appl 7:53–63. https://doi.org/10.2147/SCCAA.S58696

    Article  CAS  Google Scholar 

  114. Magatti M, Vertua E, De Munari S, Caro M, Caruso M, Silini A, Delgado M, Parolini O (2017) Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. J Tissue Eng Regen Med 11:2895–2911. https://doi.org/10.1002/term.2193

  115. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907. https://doi.org/10.1167/iovs.04-0495

    Article  PubMed  Google Scholar 

  116. Navas A, Magaña-Guerrero FS, Domínguez-López A, Chávez-García C, Partido G, Graue-Hernández EO, Sánchez-García FJ, Garfias Y (2018) Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cells Transl Med 7:906–917. https://doi.org/10.1002/sctm.18-0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li J, Koike-Soko C, Sugimoto J, Yoshida T, Okabe M, Nikaido T (2015) Human amnion-derived stem cells have immunosuppressive properties on NK cells and monocytes. Cell Transplant 24:2065–2076. https://doi.org/10.3727/096368914X685230

    Article  PubMed  Google Scholar 

  118. Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, Manuelpillai U, Toh B-H, Chan J (2012) Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PloS One 7:e35758. https://doi.org/10.1371/journal.pone.0035758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moodley Y, Ilancheran S, Samuel C, Vaghjiani V, Atienza D, Williams ED, Jenkin G, Wallace E, Trounson A, Manuelpillai U (2010) Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 182:643–651. https://doi.org/10.1164/rccm.201001-0014OC

    Article  CAS  PubMed  Google Scholar 

  120. Alhomrani M, Correia J, Zavou M, Leaw B, Kuk N, Xu R, Saad MI, Hodge A, Greening DW, Lim R, Sievert W (2017) The human amnion epithelial cell secretome decreases hepatic fibrosis in mice with chronic liver fibrosis. Front Pharmacol 8:748. https://doi.org/10.3389/fphar.2017.00748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan JL, Chan ST, Wallace EM, Lim R (2014) Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant 23:319–328. https://doi.org/10.3727/096368912X661409

    Article  PubMed  Google Scholar 

  122. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192. https://doi.org/10.1634/stemcells.2007-0491

  123. Roelen DL, van der Mast BJ, in’t Anker PS, Kleijburg C, Eikmans M, van Beelen E, de Groot-Swings GMJS, Fibbe WE, Kanhai HHH, Scherjon SA, Claas FHJ (2009) Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Hum Immunol 70:16–23. https://doi.org/10.1016/j.humimm.2008.10.016

  124. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O (2015) Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev 11:394–407. https://doi.org/10.1007/s12015-014-9558-4

    Article  CAS  Google Scholar 

  125. Parolini O, Souza-Moreira L, O’Valle F, Magatti M, Hernandez-Cortes P, Gonzalez-Rey E, Delgado M (2014) Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol 66:327–339. https://doi.org/10.1002/art.38206

    Article  CAS  PubMed  Google Scholar 

  126. Pianta S, Magatti M, Vertua E, Bonassi Signoroni P, Muradore I, Nuzzo AM, Rolfo A, Silini A, Quaglia F, Todros T, Parolini O (2016) Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. J Cell Mol Med 20:157–169. https://doi.org/10.1111/jcmm.12715

    Article  CAS  PubMed  Google Scholar 

  127. Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, Park YH (2012) Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci 13:23–31. https://doi.org/10.4142/jvs.2012.13.1.23

    Article  PubMed  PubMed Central  Google Scholar 

  128. Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringdén O (2012) Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol 167:543–555. https://doi.org/10.1111/j.1365-2249.2011.04540.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bu S, Zhang Q, Wang Q, Lai D (2017) Human amniotic epithelial cells inhibit growth of epithelial ovarian cancer cells via TGF-β1-mediated cell cycle arrest. Int J Oncol 51:1405–1414. https://doi.org/10.3892/ijo.2017.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Magatti M, De Munari S, Vertua E, Parolini O (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med 16:2208–2218. https://doi.org/10.1111/j.1582-4934.2012.01531.x

  131. Ramuta TŽ, Jerman UD, Tratnjek L, Janev A, Magatti M, Vertua E, Bonassi Signoroni P, Silini AR, Parolini O, Kreft ME (2020) The cells and extracellular matrix of human amniotic membrane hinder the growth and invasive potential of bladder urothelial cancer cells. Front Bioeng Biotechnol 8:554530. https://doi.org/10.3389/fbioe.2020.554530

    Article  PubMed  PubMed Central  Google Scholar 

  132. Riedel R, Pérez-Pérez A, Carmona-Fernández A, Jaime M, Casale R, Dueñas JL, Guadix P, Sánchez-Margalet V, Varone CL, Maymó JL (2019) Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 9:14193. https://doi.org/10.1038/s41598-019-50648-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mamede AC, Laranjo M, Carvalho MJ, Abrantes AM, Pires AS, Brito AF, Moura P, Maia CJ, Botelho MF (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247:357–360. https://doi.org/10.1007/s00232-014-9642-3

    Article  CAS  PubMed  Google Scholar 

  134. Mamede AC, Guerra S, Laranjo M, Carvalho MJ, Oliveira RC, Gonçalves AC, Alves R, Prado Castro L, Sarmento-Ribeiro AB, Moura P, Abrantes AM, Maia CJ, Botelho MF (2015) Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 32:257. https://doi.org/10.1007/s12032-015-0702-z

    Article  CAS  PubMed  Google Scholar 

  135. Mamede AC, Guerra S, Laranjo M, Santos K, Carvalho MJ, Carvalheiro T, Moura P, Paiva A, Abrantes AM, Maia CJ, Botelho MF (2016) Oxidative stress, DNA, Cell Cycle/Cell cycle associated proteins and multidrug resistance proteins: targets of human amniotic membrane in hepatocellular carcinoma. Pathol Oncol Res 22:689–697. https://doi.org/10.1007/s12253-016-0053-x

    Article  CAS  PubMed  Google Scholar 

  136. Niknejad H, Yazdanpanah G, Ahmadiani A (2016) Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 363:599–608. https://doi.org/10.1007/s00441-016-2364-3

    Article  CAS  PubMed  Google Scholar 

  137. Kang N-H, Yi B-R, Lim SY, Hwang K-A, Baek YS, Kang K-S, Choi K-C (2012) Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 40:2022–2028. https://doi.org/10.3892/ijo.2012.1372

    Article  CAS  PubMed  Google Scholar 

  138. Niknejad H, Yazdanpanah G, Mirmasoumi M, Abolghasemi H, Peirovi H, Ahmadiani A (2013) Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 81:862–865. https://doi.org/10.1016/j.mehy.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  139. Kim S-H, Bang SH, Kang SY, Park KD, Eom JH, Oh IU, Yoo SH, Kim C-W, Baek SY (2015) Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules. Tissue Cell 47:10–16. https://doi.org/10.1016/j.tice.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  140. Meng M-Y, Li L, Wang W-J, Liu F-F, Song J, Yang S-L, Tan J, Gao H, Zhao Y-Y, Tang W-W, Han R, Zhu K, Liao L-W, Hou Z-L (2019) Assessment of tumor promoting effects of amniotic and umbilical cord mesenchymal stem cells in vitro and in vivo. J Cancer Res Clin Oncol 145:1133–1146. https://doi.org/10.1007/s00432-019-02859-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tehrani FA, Modaresifar K, Azizian S, Niknejad H (2017) Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep 7:17022. https://doi.org/10.1038/s41598-017-17210-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. King AE, Paltoo A, Kelly RW, Sallenave J-M, Bocking AD, Challis JRG (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28:161–169. https://doi.org/10.1016/j.placenta.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  143. Ramuta TŽ, Starčič Erjavec M, Kreft ME (2020) Amniotic Membrane Preparation Crucially Affects Its Broad-Spectrum Activity Against Uropathogenic Bacteria. Front Microbiol 11:469. https://doi.org/10.3389/fmicb.2020.00469

    Article  PubMed  PubMed Central  Google Scholar 

  144. Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME (2019) Different effects of amniotic membrane homogenate on the growth of uropathogenic Escherichia coli, Staphylococcus aureus and Serratia marcescens. Infect Drug Resist 12:3365–3375. https://doi.org/10.2147/IDR.S215006

    Article  PubMed  PubMed Central  Google Scholar 

  145. Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y (1991) Antibacterial properties of human amniotic membranes. Placenta 12:285–288. https://doi.org/10.1016/0143-4004(91)90010-d

    Article  CAS  PubMed  Google Scholar 

  146. Tehrani FA, Ahmadiani A, Niknejad H (2013) The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 67:293–298. https://doi.org/10.1016/j.cryobiol.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  147. Yadav MK, Go YY, Kim SH, Chae S-W, Song J-J (2017) Antimicrobial and antibiofilm effects of human amniotic/chorionic membrane extract on Streptococcus pneumoniae. Front Microbiol 8:1948. https://doi.org/10.3389/fmicb.2017.01948

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mao Y, Hoffman T, Johnson A, Arnold Y, Danilkovitch A, Kohn J (2016) Human cryopreserved viable amniotic membrane inhibits the growth of bacteria associated with chronic wounds. J Diabet Complications 8:23–30

    Google Scholar 

  149. Mao Y, Hoffman T, Singh-Varma A, Duan-Arnold Y, Moorman M, Danilkovitch A, Kohn J (2017) Antimicrobial peptides secreted from human cryopreserved viable amniotic membrane contribute to its antibacterial activity. Sci Rep 7:13722. https://doi.org/10.1038/s41598-017-13310-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mao Y, Singh-Varma A, Hoffman T, Dhall S, Danilkovitch A, Kohn J (2018) The effect of cryopreserved human placental tissues on biofilm formation of wound-associated pathogens. J Funct Biomater 9:3. https://doi.org/10.3390/jfb9010003

    Article  CAS  PubMed Central  Google Scholar 

  151. Kjaergaard N, Hein M, Hyttel L, Helmig RB, Schønheyder HC, Uldbjerg N, Madsen H (2001) Antibacterial properties of human amnion and chorion in vitro. Eur J Obstet Gynecol Reprod Biol 94:224–229. https://doi.org/10.1016/s0301-2115(00)00345-6

    Article  CAS  PubMed  Google Scholar 

  152. Wang X, Xie J, Tan L, Huo J, Xie H (2012) Epithelium of human fresh amniotic membrane has antimicrobial effects in vitro. Afr J Microbiol Res 6:4533–4537. https://doi.org/10.5897/AJMR12.127

    Article  CAS  Google Scholar 

  153. Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6:447–456. https://doi.org/10.1038/nri1860

    Article  CAS  PubMed  Google Scholar 

  154. Svinarich DM, Gomez R, Romero R (1997) Detection of human defensins in the placenta. Am J Reprod Immunol 38:252–255. https://doi.org/10.1111/j.1600-0897.1997.tb00511.x

    Article  CAS  PubMed  Google Scholar 

  155. Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM (2004) The novel antimicrobial peptide beta3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol 191:1678–1687. https://doi.org/10.1016/j.ajog.2004.03.081

    Article  CAS  PubMed  Google Scholar 

  156. Denison FC, Kelly RW, Calder AA, Riley SC (1999) Secretory leukocyte protease inhibitor concentration increases in amniotic fluid with the onset of labour in women: characterization of sites of release within the uterus. J Endocrinol 161:299–306. https://doi.org/10.1677/joe.0.1610299

    Article  CAS  PubMed  Google Scholar 

  157. Zaga-Clavellina V, Ruiz M, Flores-Espinosa P, Vega-Sanchez R, Flores-Pliego A, Estrada-Gutierrez G, Sosa-Gonzalez I, Morales-Méndez I, Osorio-Caballero M (2012) Tissue-specific human beta-defensins (HBD)-1, HBD-2 and HBD-3 secretion profile from human amniochorionic membranes stimulated with Candida albicans in a two-compartment tissue culture system. Reprod Biol Endocrinol 10:70. https://doi.org/10.1186/1477-7827-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schröder JM (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721. https://doi.org/10.1165/ajrcmb.22.6.4023

    Article  CAS  PubMed  Google Scholar 

  159. Krisanaprakornkit S, Weinberg A, Perez CN, Dale BA (1998) Expression of the peptide antibiotic human beta-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 66:4222–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang Q, Shimoya K, Moriyama A, Yamanaka K, Nakajima A, Nobunaga T, Koyama M, Azuma C, Murata Y (2001) Production of secretory leukocyte protease inhibitor by human amniotic membranes and regulation of its concentration in amniotic fluid. Mol Hum Reprod 7:573–579. https://doi.org/10.1093/molehr/7.6.573

    Article  CAS  PubMed  Google Scholar 

  161. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC (2002) Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol 168:2356–2364. https://doi.org/10.4049/jimmunol.168.5.2356

    Article  CAS  PubMed  Google Scholar 

  162. Malhotra C, Jain AK (2014) Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant 4:111–121. https://doi.org/10.5500/wjt.v4.i2.111

    Article  PubMed  PubMed Central  Google Scholar 

  163. Silini AR, Cargnoni A, Magatti M, Pianta S, Parolini O (2015) The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol 3:162. https://doi.org/10.3389/fbioe.2015.00162

    Article  PubMed  PubMed Central  Google Scholar 

  164. Walkden A (2020) Amniotic membrane transplantation in ophthalmology: an updated perspective. Clin Ophthalmol 14:2057–2072. https://doi.org/10.2147/OPTH.S208008

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kogan S, Sood A, Granick MS (2018) Amniotic membrane adjuncts and clinical applications in wound healing: a review of the literature. Wounds Compend Clin Res Pract 30:168–173

    Google Scholar 

  166. ElHeneidy H, Omran E, Halwagy A, Al-Inany H, Al-Ansary M, Gad A (2016) Amniotic membrane can be a valid source for wound healing. Int J Womens Health 8:225–231. https://doi.org/10.2147/IJWH.S96636

    Article  PubMed  PubMed Central  Google Scholar 

  167. Su Y-N, Zhao D-Y, Li Y-H, Yu T-Q, Sun H, Wu X-Y, Zhou X-Q, Li J (2020) Human amniotic membrane allograft, a novel treatment for chronic diabetic foot ulcers: a systematic review and meta-analysis of randomised controlled trials. Int Wound J 17:753–764. https://doi.org/10.1111/iwj.13318

    Article  PubMed  PubMed Central  Google Scholar 

  168. Fairbairn NG, Randolph MA, Redmond RW (2014) The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthetic Surg JPRAS 67:662–675. https://doi.org/10.1016/j.bjps.2014.01.031

    Article  CAS  Google Scholar 

  169. Riboh JC, Saltzman BM, Yanke AB, Cole BJ (2016) Human amniotic membrane-derived products in sports medicine: basic science, early results, and potential clinical applications. Am J Sports Med 44:2425–2434. https://doi.org/10.1177/0363546515612750

    Article  PubMed  Google Scholar 

  170. Huddleston HP, Cohn MR, Haunschild ED, Wong SE, Farr J, Yanke AB (2020) Amniotic product treatments: clinical and basic science evidence. Curr Rev Musculoskelet Med 13:148–154. https://doi.org/10.1007/s12178-020-09614-2

    Article  PubMed  PubMed Central  Google Scholar 

  171. Xu H, Zhang J, Tsang KS, Yang H, Gao W-Q (2019) Therapeutic potential of human amniotic epithelial cells on injuries and disorders in the central nervous system. In: Stem Cells International. https://www.hindawi.com/journals/sci/2019/5432301/. Accessed 11 Feb 2021

  172. Miki T (2016) A rational strategy for the use of amniotic epithelial stem cell therapy for liver diseases. Stem Cells Transl Med 5:405–409. https://doi.org/10.5966/sctm.2015-0304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pietrosi G, Fernández-Iglesias A, Pampalone M, Ortega-Ribera M, Lozano JJ, García-Calderó H, Abad-Jordà L, Conaldi PG, Parolini O, Vizzini G, Luca A, Bosch J, Gracia-Sancho J (2020) Human amniotic stem cells improve hepatic microvascular dysfunction and portal hypertension in cirrhotic rats. Liver Int Off J Int Assoc Study Liver 40:2500–2514. https://doi.org/10.1111/liv.14610

    Article  CAS  Google Scholar 

  174. Hodges R, Lim R, Jenkin G, Wallace E (2012) Amnion epithelial cells as a candidate therapy for acute and chronic lung injury. Stem Cells Int 2012:709763. https://doi.org/10.1155/2012/709763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Razavi Tousi SMT, Faghihi M, Nobakht M, Molazem M, Kalantari E, Darbandi Azar A, Aboutaleb N (2016) Improvement of heart failure by human amniotic mesenchymal stromal cell transplantation in Rats. J Tehran Heart Cent 11:123–138

    PubMed  PubMed Central  Google Scholar 

  176. Bollini S, Silini AR, Banerjee A, Wolbank S, Balbi C, Parolini O (2018) Cardiac restoration stemming from the placenta tree: insights from fetal and perinatal cell biology. Front Physiol 9:385. https://doi.org/10.3389/fphys.2018.00385

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cetinkaya B, Unek G, Kipmen-Korgun D, Koksoy S, Korgun ET (2019) Effects of human placental amnion derived mesenchymal stem cells on proliferation and apoptosis mechanisms in chronic kidney disease in the rat. Int J Stem Cells 12:151–161. https://doi.org/10.15283/ijsc18067

    Article  CAS  PubMed  Google Scholar 

  178. Volarevic V, Bojic S, Nurkovic J, Volarevic A, Ljujic B, Arsenijevic N, Lako M, Stojkovic M (2014) Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. BioMed Res Int 2014:507234. https://doi.org/10.1155/2014/507234

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wang J, Liu C, Fujino M, Tong G, Zhang Q, Li X-K, Yan H (2019) Stem cells as a resource for treatment of infertility-related diseases. Curr Mol Med 19:539–546. https://doi.org/10.2174/1566524019666190709172636

    Article  CAS  PubMed  Google Scholar 

  180. Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, Liu Z, Yang B, Yu L (2019) Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther 10:299. https://doi.org/10.1186/s13287-019-1315-9

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li B, Zhang Q, Sun J, Lai D (2019) Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther 10:257. https://doi.org/10.1186/s13287-019-1368-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Song C-G, Zhang Y-Z, Wu H-N, Cao X-L, Guo C-J, Li Y-Q, Zheng M-H, Han H (2018) Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res 13:1294–1304. https://doi.org/10.4103/1673-5374.235085

    Article  PubMed  PubMed Central  Google Scholar 

  183. Teo L, Bourne JA (2014) A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. Brain Pathol 24:459–474. https://doi.org/10.1111/bpa.12129

    Article  PubMed  PubMed Central  Google Scholar 

  184. Dong W, Chen H, Yang X, Guo L, Hui G (2010) Treatment of intracerebral haemorrhage in rats with intraventricular transplantation of human amniotic epithelial cells. Cell Biol Int 34:573–577. https://doi.org/10.1042/CBI20090248

    Article  PubMed  Google Scholar 

  185. Zhou H, Mu Z, Chen X, Shi Z, Zha Z, Liu Y, Xu Z (2015) HAEC in the treatment of brain hemorrhage: a preliminary observation in rabbits. Int J Clin Exp Pathol 8:6772–6778

    PubMed  PubMed Central  Google Scholar 

  186. Wu Z, Hui G, Lu Y, Wu X, Guo L (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl) 119:2101–2107

    Article  Google Scholar 

  187. Roh D-H, Seo M-S, Choi H-S, Park S-B, Han H-J, Beitz AJ, Kang K-S, Lee J-H (2013) Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 22:1577–1590. https://doi.org/10.3727/096368912X659907

    Article  PubMed  Google Scholar 

  188. Meng X, Li C, Dong Z, Liu J, Li W, Liu Y, Xue H, Chen D (2008) Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int 32:1546–1558. https://doi.org/10.1016/j.cellbi.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  189. Xue H, Zhang X-Y, Liu J-M, Song Y, Li Y-F, Chen D (2013) Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res A 101:145–156. https://doi.org/10.1002/jbm.a.34311

    Article  CAS  PubMed  Google Scholar 

  190. Wang T-G, Xu J, Zhu A-H, Lu H, Miao Z-N, Zhao P, Hui G-Z, Wu W-J (2016) Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury. Neural Regen Res 11:1670–1677. https://doi.org/10.4103/1673-5374.193249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang X, Xue S, Dong W, Kong Y (2009) Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats. Chin Med J (Engl) 122:2449–2454

    CAS  Google Scholar 

  192. Yang X, Song L, Wu N, Liu Z, Xue S, Hui G (2010) An experimental study on intracerebroventricular transplantation of human amniotic epithelial cells in a rat model of Parkinson’s disease. Neurol Res 32:1054–1059. https://doi.org/10.1179/016164110X12681290831207

    Article  PubMed  Google Scholar 

  193. Leaw B, Zhu D, Tan J, Muljadi R, Saad MI, Mockler JC, Wallace EM, Lim R, Tolcos M (2017) Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury. Stem Cell Res Ther 8:46. https://doi.org/10.1186/s13287-017-0496-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yawno T, Schuilwerve J, Moss TJM, Vosdoganes P, Westover AJ, Afandi E, Jenkin G, Wallace EM, Miller SL (2013) Human amnion epithelial cells reduce fetal brain injury in response to intrauterine inflammation. Dev Neurosci 35:272–282. https://doi.org/10.1159/000346683

    Article  CAS  PubMed  Google Scholar 

  195. Yawno T, Sabaretnam T, Li J, McDonald C, Lim R, Jenkin G, Wallace EM, Miller SL (2017) Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus. Cell Transplant 26:541–553. https://doi.org/10.3727/096368916X693572

    Article  PubMed  PubMed Central  Google Scholar 

  196. Barton SK, Melville JM, Tolcos M, Polglase GR, McDougall ARA, Azhan A, Crossley KJ, Jenkin G, Moss TJM (2015) Human amnion epithelial cells modulate ventilation-induced white matter pathology in preterm lambs. Dev Neurosci 37:338–348. https://doi.org/10.1159/000371415

    Article  CAS  PubMed  Google Scholar 

  197. Liu Y-H, Chan J, Vaghjiani V, Murthi P, Manuelpillai U, Toh B-H (2014) Human amniotic epithelial cells suppress relapse of corticosteroid-remitted experimental autoimmune disease. Cytotherapy 16:535–544. https://doi.org/10.1016/j.jcyt.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  198. McDonald CA, Payne NL, Sun G, Moussa L, Siatskas C, Lim R, Wallace EM, Jenkin G, Bernard CCA (2015) Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation 12:112. https://doi.org/10.1186/s12974-015-0322-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim K-S, Kim HS, Park J-M, Kim HW, Park M-K, Lee H-S, Lim DS, Lee TH, Chopp M, Moon J (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34:2408–2420. https://doi.org/10.1016/j.neurobiolaging.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  200. Kim KY, Suh Y-H, Chang K-A (2020) Therapeutic effects of human amniotic epithelial stem cells in a transgenic mouse model of alzheimer’s disease. Int J Mol Sci 21:2658. https://doi.org/10.3390/ijms21072658

    Article  CAS  PubMed Central  Google Scholar 

  201. Shu J, He X, Li H, Liu X, Qiu X, Zhou T, Wang P, Huang X (2018) The beneficial effect of human amnion mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. J Immunol Res 2018:5083797. https://doi.org/10.1155/2018/5083797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Xu Y, Chen C, Hellwarth PB, Bao X (2019) Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater 4:366–379. https://doi.org/10.1016/j.bioactmat.2019.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M (2018) Biomaterials for regenerative medicine: historical perspectives and current trends. Adv Exp Med Biol 1119:1–19. https://doi.org/10.1007/5584_2018_278

    Article  CAS  PubMed  Google Scholar 

  204. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF (2006) Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng 12:2949–2955. https://doi.org/10.1089/ten.2006.12.2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. FitzGerald JF, Kumar AS (2014) Biologic versus synthetic mesh reinforcement: what are the Pros and Cons? Clin Colon Rectal Surg 27:140–148. https://doi.org/10.1055/s-0034-1394155

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jerman UD, Veranič P, Kreft ME (2014) Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods 20:317–327. https://doi.org/10.1089/ten.TEC.2013.0298

    Article  CAS  PubMed  Google Scholar 

  207. Jerman UD, Veranič P, Cirman T, Kreft ME (2020) Human amniotic membrane enriched with urinary bladder fibroblasts promote the re-epithelization of urothelial injury. Cell Transplant 29:963689720946668. https://doi.org/10.1177/0963689720946668

    Article  PubMed  Google Scholar 

  208. Iranpour S, Mahdavi-Shahri N, Miri R, Hasanzadeh H, Bidkhori HR, Naderi-Meshkin H, Zahabi E, Matin MM (2018) Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell Tissue Bank 19:357–371. https://doi.org/10.1007/s10561-017-9680-z

    Article  CAS  PubMed  Google Scholar 

  209. Sous Naasani LI, Rodrigues C, Azevedo JG, Damo Souza AF, Buchner S, Wink MR (2018) Comparison of human denuded amniotic membrane and porcine small intestine submucosa as scaffolds for limbal mesenchymal stem cells. Stem Cell Rev Rep 14:744–754. https://doi.org/10.1007/s12015-018-9819-8

    Article  CAS  PubMed  Google Scholar 

  210. Dorazehi F, Nabiuni M, Jalali H (2018) Potential use of amniotic membrane—derived scaffold for cerebrospinal fluid applications. Int J Mol Cell Med 7:91–101. https://doi.org/10.22088/IJMCM.BUMS.7.2.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Parveen S, Singh SP, Panicker MM, Gupta PK (2019) Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis. In Vitro Cell Dev Biol Anim 55:272–284. https://doi.org/10.1007/s11626-019-00321-y

    Article  CAS  PubMed  Google Scholar 

  212. Murphy SV, Skardal A, Song L, Sutton K, Haug R, Mack DL, Jackson J, Soker S, Atala A (2017) Solubilized amnion membrane hyaluronic acid hydrogel accelerates full-thickness wound healing. Stem Cells Transl Med 6:2020–2032. https://doi.org/10.1002/sctm.17-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Choi WY, Jeon HG, Chung Y, Lim JJ, Shin DH, Kim JM, Ki BS, Song S-H, Choi S-J, Park K-H, Shim SH, Moon J, Jung SJ, Kang HM, Park S, Chung HM, Ko JJ, Cha KY, Yoon TK, Kim H, Lee DR (2013) Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev 22:2158–2173. https://doi.org/10.1089/scd.2012.0385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Vojdani Z, Babaei A, Vasaghi A, Habibagahi M, Talaei-Khozani T (2016) The effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood? Iran J Basic Med Sci 19:89–96

    PubMed  PubMed Central  Google Scholar 

  215. Johnson CT, García AJ (2015) Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 43:515–528. https://doi.org/10.1007/s10439-014-1205-3

    Article  PubMed  Google Scholar 

  216. Ahmed W, Zhai Z, Gao C (2019) Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2:100017. https://doi.org/10.1016/j.mtbio.2019.100017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. De Jong OG, Van Balkom BWM, Schiffelers RM, Bouten CVC, Verhaar MC (2014) Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 5:608. https://doi.org/10.3389/fimmu.2014.00608

  218. Gao S, Chen T, Hao Y, Zhang F, Tang X, Wang D, Wei Z, Qi J (2020) Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression. Stem Cell Res Ther 11:56. https://doi.org/10.1186/s13287-020-1570-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD (2019) Smart hydrogels in tissue engineering and regenerative medicine. Mater Basel 12:3323. https://doi.org/10.3390/ma12203323

    Article  CAS  Google Scholar 

  220. Guan X, Avci-Adali M, Alarçin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A (2017) Development of hydrogels for regenerative engineering. Biotechnol J 12:10. https://doi.org/10.1002/biot.201600394

    Article  CAS  PubMed Central  Google Scholar 

  221. Chen J, Wang M-W, Xu J-J, Wu X-Y, Yao J (2020) Gelatin methacryloyl hydrogel eye pad loaded with amniotic extract prevents symblepharon in rabbit eyes. Eur Rev Med Pharmacol Sci 24:10134–10142. https://doi.org/10.26355/eurrev_202010_23233

    Article  CAS  PubMed  Google Scholar 

  222. Murphy SV, Skardal A, Nelson RA, Sunnon K, Reid T, Clouse C, Kock ND, Jackson J, Soker S, Atala A (2020) Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem Cells Transl Med 9:80–92. https://doi.org/10.1002/sctm.19-0101

    Article  CAS  PubMed  Google Scholar 

  223. Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y (2019) Recent progress in drug delivery. Acta Pharm Sin B 9:1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  224. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11. https://doi.org/10.4103/2230-973X.96920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li W, Chen W-J, Liu W, Liang L, Zhang M-C (2012) Homemade lyophilized cross linking amniotic sustained-release drug membrane with anti-scarring role after filtering surgery in rabbit eyes. Int J Ophthalmol 5:555–561. https://doi.org/10.3980/j.issn.2222-3959.2012.05.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hu F, Zeng X-Y, Xie Z-L, Liu L-L, Huang L (2015) Clinical outcomes of amniotic membrane loaded with 5-FU PLGA nanoparticles in experimental trabeculectomy. Int J Ophthalmol 8:29–34. https://doi.org/10.3980/j.issn.2222-3959.2015.01.05

    Article  PubMed  PubMed Central  Google Scholar 

  227. Francisco JC, Uemura L, Simeoni RB, da Cunha RC, Mogharbel BF, Simeoni PRB, Naves G, Napimoga MH, Noronha L, Carvalho KAT, Moreira LFP, Guarita-Souza LC (2020) Acellular human amniotic membrane scaffold with 15d-PGJ2 nanoparticles in postinfarct rat model. Tissue Eng Part A 26:1128–1137. https://doi.org/10.1089/ten.TEA.2019.0340

  228. Bonomi A, Silini A, Vertua E, Signoroni PB, Coccè V, Cavicchini L, Sisto F, Alessandri G, Pessina A, Parolini O (2015) Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Res Ther 6:155. https://doi.org/10.1186/s13287-015-0140-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Resch MD, Resch BE, Csizmazia E, Imre L, Németh J, Révész P, Csányi E (2010) Permeability of human amniotic membrane to ofloxacin in vitro. Invest Ophthalmol Vis Sci 51:1024–1027. https://doi.org/10.1167/iovs.09-4254

    Article  PubMed  Google Scholar 

  230. Resch MD, Resch BE, Csizmazia E, Imre L, Németh J, Szabó-Révész P, Csányi E (2011) Drug reservoir function of human amniotic membrane. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther 27:323–326. https://doi.org/10.1089/jop.2011.0007

    Article  CAS  Google Scholar 

  231. Kim HS, Sah WJ, Kim YJ, Kim JC, Hahn TW (2001) Amniotic membrane, tear film, corneal, and aqueous levels of ofloxacin in rabbit eyes after amniotic membrane transplantation. Cornea 20:628–634. https://doi.org/10.1097/00003226-200108000-00014

    Article  CAS  PubMed  Google Scholar 

  232. Yelchuri ML, Madhavi B, Gohil N, Sajeev HS, Venkatesh Prajna N, Srinivasan S (2017) In vitro evaluation of the drug reservoir function of human amniotic membrane using moxifloxacin as a model drug. Cornea 36:594–599. https://doi.org/10.1097/ICO.0000000000001168

    Article  PubMed  Google Scholar 

  233. Mencucci R, Menchini U, Dei R (2006) Antimicrobial activity of antibiotic-treated amniotic membrane: an in vitro study. Cornea 25:428–431. https://doi.org/10.1097/01.ico.0000214207.06952.23

    Article  PubMed  Google Scholar 

  234. Sara SH, Prajna NV, Senthilkumari S (2019) Human amniotic membrane as a drug carrier—an in-vitro study using fortified cefazolin ophthalmic solution. Indian J Ophthalmol 67:472–475. https://doi.org/10.4103/ijo.IJO_1336_18

    Article  PubMed  PubMed Central  Google Scholar 

  235. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323. https://doi.org/10.7150/thno.14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rennie K, Gruslin A, Hengstschläger M, Pei D, Cai J, Nikaido T, Bani-Yaghoub M (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:721538. https://doi.org/10.1155/2012/721538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Kreft Erdani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramuta Železnik, T., Tratnjek, L., Kreft Erdani, M. (2022). Amniotic Membrane: A Unique Combination of Stem-Like Cells, Extracellular Matrix with Indispensable Potential for Regenerative Medicine. In: Virant-Klun, I. (eds) Stem Cells in Reproductive Tissues and Organs. Stem Cell Biology and Regenerative Medicine, vol 70. Humana, Cham. https://doi.org/10.1007/978-3-030-90111-0_13

Download citation

Publish with us

Policies and ethics