Skip to main content

Advertisement

Log in

Scaffold-based Anti-infection Strategies in Bone Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adams, C. S., V. Antoci, Jr., G. Harrison, P. Patal, T. A. Freeman, I. M. Shapiro, J. Parvizi, N. J. Hickok, S. Radin, and P. Ducheyne. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis. J. Orthop. Res. 27:701–709, 2009.

    Article  CAS  PubMed  Google Scholar 

  2. Afacan, N. J., A. T. Yeung, O. M. Pena, and R. E. Hancock. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des. 18:807–819, 2012.

    Article  CAS  PubMed  Google Scholar 

  3. Alarcon, E. I., K. Udekwu, M. Skog, N. L. Pacioni, K. G. Stamplecoskie, M. Gonzalez-Bejar, N. Polisetti, A. Wickham, A. Richter-Dahlfors, M. Griffith, and J. C. Scaiano. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33:4947–4956, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Alemayehu, D., P. G. Casey, O. McAuliffe, C. M. Guinane, J. G. Martin, F. Shanahan, A. Coffey, R. P. Ross, and C. Hill. Bacteriophages phimr299-2 and phinh-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 3:e00029–00012, 2012.

  5. AshaRani, P. V., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3:279–290, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Beattie, M., and J. Taylor. Silver alloy vs. uncoated urinary catheters: a systematic review of the literature. J. Clin. Nurs. 20:2098–2108, 2011.

    Article  PubMed  Google Scholar 

  7. Bhattacharyya, S., A. Agrawal, C. Knabe, and P. Ducheyne. Sol–gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus. Biomaterials 35:509–517, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Bi, L., Y. Hu, H. Fan, G. Meng, J. Liu, D. Li, and R. Lv. Treatment of contaminated bone defects with clindamycin-reconstituted bone xenograft-composites. J. Biomed. Mater. Res. B Appl. Biomater. 82:418–427, 2007.

    Article  PubMed  CAS  Google Scholar 

  9. Bjarnsholt, T., O. Ciofu, S. Molin, M. Givskov, and N. Hoiby. Applying insights from biofilm biology to drug development—can a new approach be developed? Nat. Rev. Drug Discov. 12:791–808, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Braydich-Stolle, L., S. Hussain, J. J. Schlager, and M. C. Hofmann. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88:412–419, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Brogden, N. K., and K. A. Brogden. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents 38:217–225, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Brouwer, C. P., L. Sarda-Mantel, A. Meulemans, D. Le Guludec, and M. M. Welling. The use of technetium-99 m radiolabeled human antimicrobial peptides for infection specific imaging. Mini. Rev. Med. Chem. 8:1039–1052, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Bruttin, A., and H. Brussow. Human volunteers receiving escherichia coli phage t4 orally: a safety test of phage therapy. Antimicrob. Agents Chemother. 49:2874–2878, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Campoccia, D., L. Montanaro, and C. R. Arciola. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Campoccia, D., L. Montanaro, and C. R. Arciola. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34:8018–8029, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Chatzistavrou, X., J. C. Fenno, D. Faulk, S. Badylak, T. Kasuga, A. R. Boccaccini, and P. Papagerakis. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater. 10:3723–3732, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, X., L. S. Kidder, and W. D. Lew. Osteogenic protein-1 induced bone formation in an infected segmental defect in the rat femur. J. Orthop. Res. 20:142–150, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X., D. T. Tsukayama, L. S. Kidder, C. A. Bourgeault, A. H. Schmidt, and W. D. Lew. Characterization of a chronic infection in an internally-stabilized segmental defect in the rat femur. J. Orthop. Res. 23:816–823, 2005.

    Article  PubMed  Google Scholar 

  19. Chen, X., A. H. Schmidt, D. T. Tsukayama, C. A. Bourgeault, and W. D. Lew. Recombinant human osteogenic protein-1 induces bone formation in a chronically infected, internally stabilized segmental defect in the rat femur. J. Bone Joint Surg. Am. 88:1510–1523, 2006.

    Article  PubMed  Google Scholar 

  20. Chen, X., A. H. Schmidt, S. Mahjouri, D. W. Polly, Jr., and W. D. Lew. Union of a chronically infected internally stabilized segmental defect in the rat femur after debridement and application of rhbmp-2 and systemic antibiotic. J. Orthop. Trauma. 21:693–700, 2007.

    Article  PubMed  Google Scholar 

  21. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. Microbial biofilms. Annu. Rev. Microbiol. 49:711–745, 1995.

    Article  CAS  PubMed  Google Scholar 

  22. Cui, X., C. Zhao, Y. Gu, L. Li, H. Wang, W. Huang, N. Zhou, D. Wang, Y. Zhu, J. Xu, S. Luo, C. Zhang, and M. N. Rahaman. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. J. Mater. Sci. Mater. Med. 25:733–745, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Darouiche, R. O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 350:1422–1429, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Davies, J., and D. Davies. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417–433, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De Long, Jr., W. G., T. A. Einhorn, K. Koval, M. McKee, W. Smith, R. Sanders, and T. Watson. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Joint Surg. Am. 89:649–658, 2007.

    Article  PubMed  Google Scholar 

  26. De Smet, K., and R. Contreras. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett. 27:1337–1347, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Dimitriou, R., E. Jones, D. McGonagle, and P. V. Giannoudis. Bone regeneration: current concepts and future directions. BMC Med. 9:66, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dinjaski, N., S. Suri, J. Valle, S. M. Lehman, I. Lasa, M. A. Prieto, and A. J. Garcia. Near-infrared fluorescence imaging as an alternative to bioluminescent bacteria to monitor biomaterial-associated infections. Acta Biomater. 10:2935–2944, 2014.

    Article  CAS  PubMed  Google Scholar 

  29. Doty, H. A., M. R. Leedy, H. S. Courtney, W. O. Haggard, and J. D. Bumgardner. Composite chitosan and calcium sulfate scaffold for dual delivery of vancomycin and recombinant human bone morphogenetic protein-2. J. Mater. Sci. Mater. Med. 25:1449–1459, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Driffield, K., K. Miller, J. M. Bostock, A. J. O’Neill, and I. Chopra. Increased mutability of Pseudomonas aeruginosa in biofilms. J. Antimicrob. Chemother. 61:1053–1056, 2008.

    Article  CAS  PubMed  Google Scholar 

  31. Eggleston, H., and P. Panizzi. Molecular imaging of bacterial infections in vivo: the discrimination between infection and inflammation. Informatics 1:72–99, 2014.

    Article  Google Scholar 

  32. Engelsman, A. F., H. C. van der Mei, K. P. Francis, H. J. Busscher, R. J. Ploeg, and G. M. van Dam. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. J. Biomed. Mater. Res. B Appl. Biomater. 88:123–129, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Feng, K., H. Sun, M. A. Bradley, E. J. Dupler, W. V. Giannobile, and P. X. Ma. Novel antibacterial nanofibrous plla scaffolds. J. Control Release 146:363–369, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Fridkin, S. K. Increasing prevalence of antimicrobial resistance in intensive care units. Crit. Care Med. 29:N64–N68, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Fu, W., T. Forster, O. Mayer, J. J. Curtin, S. M. Lehman, and R. M. Donlan. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54:397–404, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Funao, H., K. Ishii, S. Nagai, A. Sasaki, T. Hoshikawa, M. Aizawa, Y. Okada, K. Chiba, S. Koyasu, Y. Toyama, and M. Matsumoto. Establishment of a real-time, quantitative, and reproducible mouse model of staphylococcus osteomyelitis using bioluminescence imaging. Infect Immun. 80:733–741, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gristina, A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595, 1987.

    Article  CAS  PubMed  Google Scholar 

  38. Guelcher, S. A., K. V. Brown, B. Li, T. Guda, B. H. Lee, and J. C. Wenke. Dual-purpose bone grafts improve healing and reduce infection. J. Orthop. Trauma 25:477–482, 2011.

    Article  PubMed  Google Scholar 

  39. Hanlon, G. W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents 30:118–128, 2007.

    Article  CAS  PubMed  Google Scholar 

  40. Hilchie, A. L., K. Wuerth, and R. E. Hancock. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 9:761–768, 2013.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffman, L. R., D. A. D’Argenio, M. J. MacCoss, Z. Zhang, R. A. Jones, and S. I. Miller. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Horst, S. A., V. Hoerr, A. Beineke, C. Kreis, L. Tuchscherr, J. Kalinka, S. Lehne, I. Schleicher, G. Kohler, T. Fuchs, M. J. Raschke, M. Rohde, G. Peters, C. Faber, B. Loffler, and E. Medina. A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection: an integrated view of disease pathogenesis. Am. J. Pathol. 181:1206–1214, 2012.

    Article  PubMed  Google Scholar 

  43. Huang, D., Y. Zuo, Q. Zou, L. Zhang, J. Li, L. Cheng, J. Shen, and Y. Li. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery. J. Biomater. Sci. Polym. Ed. 22:931–944, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Hughes, K. A., I. W. Sutherland, and M. V. Jones. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144(Pt 11):3039–3047, 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Izadpanah, A., and R. L. Gallo. Antimicrobial peptides. J. Am. Acad. Dermatol. 52:381–390, 2005; (quiz 391-382).

    Article  PubMed  Google Scholar 

  46. Jia, W. T., X. Zhang, C. Q. Zhang, X. Liu, W. H. Huang, M. N. Rahaman, and D. E. Day. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite. Int. J. Pharm. 387:184–186, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Journeaux, S. F., N. Johnson, S. L. Bryce, S. J. Friedman, S. M. Sommerville, and D. A. Morgan. Bacterial contamination rates during bone allograft retrieval. J. Arthroplasty. 14:677–681, 1999.

    Article  CAS  PubMed  Google Scholar 

  48. Kadurugamuwa, J. L., L. Sin, E. Albert, J. Yu, K. Francis, M. DeBoer, M. Rubin, C. Bellinger-Kawahara, T. R. Parr, and P. R. Contag. Direct continuous method for monitoring biofilm infection in a mouse model. Infect. Immun. 71:882–890, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kadurugamuwa, J. L., L. V. Sin, J. Yu, K. P. Francis, R. Kimura, T. Purchio, and P. R. Contag. Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrob. Agents Chemother. 47:3130–3137, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kalghatgi, S., C. S. Spina, J. C. Costello, M. Liesa, J. R. Morones-Ramirez, S. Slomovic, A. Molina, O. S. Shirihai, and J. J. Collins. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med. 5:192ra185, 2013.

    Article  CAS  Google Scholar 

  51. Kanellakopoulou, K., I. Galanopoulos, V. Soranoglou, T. Tsaganos, V. Tziortzioti, I. Maris, A. Papalois, H. Giamarellou, and E. J. Giamarellos-Bourboulis. Treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with a synthetic carrier of calcium sulphate (stimulan) releasing moxifloxacin. Int. J. Antimicrob. Agents. 33:354–359, 2009.

    Article  CAS  PubMed  Google Scholar 

  52. Kaur, S., K. Harjai, and S. Chhibber. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic k wires in presence of linezolid prevents implant colonization. PLoS ONE 9:e90411, 2014.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Kollef, M. H., B. Afessa, A. Anzueto, C. Veremakis, K. M. Kerr, B. D. Margolis, D. E. Craven, P. R. Roberts, A. C. Arroliga, R. D. Hubmayr, M. I. Restrepo, W. R. Auger, R. Schinner, and N. I. Group. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the nascent randomized trial. JAMA 300:805–813, 2008.

    Article  CAS  PubMed  Google Scholar 

  54. Kuijer, R., E. J. Jansen, P. J. Emans, S. K. Bulstra, J. Riesle, J. Pieper, D. W. Grainger, and H. J. Busscher. Assessing infection risk in implanted tissue-engineered devices. Biomaterials 28:5148–5154, 2007.

    Article  CAS  PubMed  Google Scholar 

  55. Lazzarini, L., J. T. Mader, and J. H. Calhoun. Osteomyelitis in long bones. J. Bone Joint Surg. Am. 86A:2305–2318, 2004.

    Google Scholar 

  56. Lew, D. P., and F. A. Waldvogel. Osteomyelitis. Lancet 364:369–379, 2004.

    Article  CAS  PubMed  Google Scholar 

  57. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45:999–1007, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64:357–372, 2010.

    Article  CAS  PubMed  Google Scholar 

  59. Li, B., K. V. Brown, J. C. Wenke, and S. A. Guelcher. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J. Control Release 145:221–230, 2010.

    Article  CAS  PubMed  Google Scholar 

  60. Lord, C. F., M. C. Gebhardt, W. W. Tomford, and H. J. Mankin. Infection in bone allografts. Incidence, nature, and treatment. J. Bone Joint Surg. Am. 70:369–376, 1988.

    CAS  PubMed  Google Scholar 

  61. Lu, T. K., and J. J. Collins. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad Sci. USA 104:11197–11202, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lu, T. K., and M. S. Koeris. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14:524–531, 2011.

    Article  PubMed  Google Scholar 

  63. Ma, H., E. T. Darmawan, M. Zhang, L. Zhang, and J. D. Bryers. Development of a poly(ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J. Control Release 172:1035–1044, 2013.

    Article  CAS  PubMed  Google Scholar 

  64. Macia, M. D., J. L. Perez, S. Molin, and A. Oliver. Dynamics of mutator and antibiotic-resistant populations in a pharmacokinetic/pharmacodynamic model of Pseudomonas aeruginosa biofilm treatment. Antimicrob. Agents Chemother. 55:5230–5237, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Mandal, A., V. Meda, W. J. Zhang, K. M. Farhan, and A. Gnanamani. Synthesis, characterization and comparison of antimicrobial activity of peg/tritonx-100 capped silver nanoparticles on collagen scaffold. Colloids Surf. B Biointerfaces 90:191–196, 2012.

    Article  CAS  PubMed  Google Scholar 

  66. Mankin, H. J., F. J. Hornicek, and K. A. Raskin. Infection in massive bone allografts. Clin. Orthop. Relat. Res. 432:210–216, 2005.

    Article  PubMed  Google Scholar 

  67. Marambio-Jones, C., and E. M. V. Hoek. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12:1531–1551, 2010.

    Article  CAS  Google Scholar 

  68. Meurice, E., E. Rguiti, A. Brutel, J. C. Hornez, A. Leriche, M. Descamps, and F. Bouchart. New antibacterial microporous cap materials loaded with phages for prophylactic treatment in bone surgery. J. Mater. Sci. Mater. Med. 23:2445–2452, 2012.

    Article  CAS  PubMed  Google Scholar 

  69. Mills, L. A., and A. H. Simpson. In vivo models of bone repair. J. Bone Joint Surg. Br. 94:865–874, 2012.

    Article  CAS  PubMed  Google Scholar 

  70. Morello, E., E. Saussereau, D. Maura, M. Huerre, L. Touqui, and L. Debarbieux. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS ONE 6:e16963, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Morones-Ramirez, J. R., J. A. Winkler, C. S. Spina, and J. J. Collins. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 5:190ra181, 2013.

    Article  CAS  Google Scholar 

  72. Nijnik, A., and R. Hancock. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg. Health Threats J. 2:e1, 2009.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. O’Loughlin, C. T., L. C. Miller, A. Siryaporn, K. Drescher, M. F. Semmelhack, and B. L. Bassler. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 110:17981–17986, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Penn-Barwell, J. G., B. C. Rand, K. V. Brown, and J. C. Wenke. A versatile model of open-fracture infection : a contaminated segmental rat femur defect. Bone Joint Res. 3:187–192, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pierce, G. E. Pseudomonas aeruginosa, candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J. Ind. Microbiol. Biotechnol. 32:309–318, 2005.

    Article  CAS  PubMed  Google Scholar 

  76. Rahaman, M. N., B. S. Bal, and W. Huang. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints. Mater. Sci. Eng. C Mater. Biol. Appl. 41:224–231, 2014.

    Article  CAS  PubMed  Google Scholar 

  77. Ramage, G., M. M. Tunney, S. Patrick, S. P. Gorman, and J. R. Nixon. Formation of propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 24:3221–3227, 2003.

    Article  CAS  PubMed  Google Scholar 

  78. Reizner, W., J. G. Hunter, N. T. O’Malley, R. D. Southgate, E. M. Schwarz, and S. L. Kates. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cell Mater. 27:196–212, 2014.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Rhoads, D. D., R. D. Wolcott, M. A. Kuskowski, B. M. Wolcott, L. S. Ward, and A. Sulakvelidze. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J. Wound Care. 18:237–238, 2009.

    Article  CAS  PubMed  Google Scholar 

  80. Ruckh, T. T., R. A. Oldinski, D. A. Carroll, K. Mikhova, J. D. Bryers, and K. C. Popat. Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J. Mater. Sci. Mater. Med. 23:1411–1420, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Ryan, E. M., M. Y. Alkawareek, R. F. Donnelly, and B. F. Gilmore. Synergistic phage-antibiotic combinations for the control of escherichia coli biofilms in vitro. FEMS Immunol. Med. Microbiol. 65:395–398, 2012.

    Article  CAS  PubMed  Google Scholar 

  82. Sanchez, Jr., C. J., E. M. Prieto, E. M. Prieto, C. A. Krueger, K. J. Zienkiewicz, D. R. Romano, C. L. Ward, K. S. Akers, K. S. Guelcher, and J. C. Wenke. Effects of local delivery of d-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects. Biomaterials 34:7533–7543, 2013.

    Article  CAS  PubMed  Google Scholar 

  83. Saravanan, S., S. Nethala, S. Pattnaik, A. Tripathi, A. Moorthi, and N. Selvamurugan. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Biol. Macromol. 49:188–193, 2011.

    Article  CAS  PubMed  Google Scholar 

  84. Schuch, R., H. M. Lee, B. C. Schneider, K. L. Sauve, C. Law, B. K. Khan, J. A. Rotolo, Y. Horiuchi, D. E. Couto, A. Raz, V. A. Fischetti, D. B. Huang, R. C. Nowinski, and M. Wittekind. Combination therapy with lysin cf-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J. Infect Dis. 209:1469–1478, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Shi, X., Y. Wang, L. Ren, W. Huang, and D. A. Wang. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Int. J. Pharm. 373:85–92, 2009.

    Article  CAS  PubMed  Google Scholar 

  86. Silver, S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27:341–353, 2003.

    Article  CAS  PubMed  Google Scholar 

  87. Sjollema, J., P. K. Sharma, R. J. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher. The potential for bio-optical imaging of biomaterial-associated infection in vivo. Biomaterials 31:1984–1995, 2010.

    Article  CAS  PubMed  Google Scholar 

  88. Southwood, L. L., D. D. Frisbie, C. E. Kawcak, S. C. Ghivizzani, C. H. Evans, and C. W. McIlwraith. Evaluation of ad-bmp-2 for enhancing fracture healing in an infected defect fracture rabbit model. J. Orthop. Res. 22:66–72, 2004.

    Article  CAS  PubMed  Google Scholar 

  89. Stewart, P. S., and J. W. Costerton. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138, 2001.

    Article  CAS  PubMed  Google Scholar 

  90. Storm-Versloot, M. N., C. G. Vos, D. T. Ubbink, and H. Vermeulen. Topical silver for preventing wound infection. Cochrane Database Syst. Rev. 3:CD006478, 2010.

    PubMed  Google Scholar 

  91. Suri, S., S. M. Lehman, S. Selvam, K. Reddie, S. Maity, N. Murthy, and A. J. Garcia. In vivo fluorescence imaging of biomaterial-associated inflammation and infection in a minimally invasive manner. J. Biomed. Mater. Res. A., 2014.

  92. Thomes, B., P. Murray, and D. Bouchier-Hayes. Development of resistant strains of staphylococcus epidermidis on gentamicin-loaded bone cement in vivo. J. Bone Joint Surg. Br. 84:758–760, 2002.

    Article  CAS  PubMed  Google Scholar 

  93. Trampuz, A., and A. F. Widmer. Infections associated with orthopedic implants. Curr. Opin. Infect. Dis. 19:349–356, 2006.

    Article  CAS  PubMed  Google Scholar 

  94. Trampuz, A., and W. Zimmerli. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37(Suppl 2):S59–S66, 2006.

    Article  PubMed  Google Scholar 

  95. Trujillo, N. A., R. A. Oldinski, H. Y. Ma, J. D. Bryers, J. D. Williams, and K. C. Popat. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng. 32:2135–2144, 2012.

    Article  CAS  Google Scholar 

  96. van Oosten, M., T. Schafer, J. A. Gazendam, K. Ohlsen, E. Tsompanidou, M. C. de Goffau, H. J. Harmsen, L. M. Crane, E. Lim, K. P. Francis, L. Cheung, M. Olive, V. Ntziachristos, J. M. van Dijl, and G. M. van Dam. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat. Commun. 4:2584, 2013.

    PubMed  Google Scholar 

  97. Wang, J., Y. Zhu, H. K. Bawa, G. Ng, Y. Wu, M. Libera, H. C. van der Mei, H. J. Busscher, and X. Yu. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl. Mater. Interfaces 3:67–73, 2011.

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Q., X. Yu, and M. Libera. Reducing bacterial colonization of 3-d nanofiber cell scaffolds by hierarchical assembly of microgels and an antimicrobial peptide. Adv. Healthcare Mater. 2:687–691, 2013.

    Article  CAS  Google Scholar 

  99. Wright, A., C. H. Hawkins, E. E. Anggard, and D. R. Harper. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34:349–357, 2009.

    Article  CAS  PubMed  Google Scholar 

  100. Wu, C., Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, and Y. Xiao. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34:422–433, 2013.

    Article  CAS  PubMed  Google Scholar 

  101. Xie, Z., X. Liu, W. Jia, C. Zhang, W. Huang, and J. Wang. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J. Control Release 139:118–126, 2009.

    Article  CAS  PubMed  Google Scholar 

  102. Yasko, A. W., J. M. Lane, E. J. Fellinger, V. Rosen, J. M. Wozney, and E. A. Wang. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhbmp-2). A radiographic, histological, and biomechanical study in rats. J. Bone Joint Surg. Am. 74:659–670, 1992.

    CAS  PubMed  Google Scholar 

  103. Zheng, Z., W. Yin, J. N. Zara, W. Li, J. Kwak, R. Mamidi, M. Lee, R. K. Siu, R. Ngo, J. Wang, D. Carpenter, X. Zhang, B. Wu, K. Ting, and C. Soo. The use of bmp-2 coupled—nanosilver-plga composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31:9293–9300, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Zilberman, M., and J. J. Elsner. Antibiotic-eluting medical devices for various applications. J. Control Release 130:202–215, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the National Institutes of Health (R01 AR062920, R01 AR062368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés J. García.

Additional information

Associate Editor Fei Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, C.T., García, A.J. Scaffold-based Anti-infection Strategies in Bone Repair. Ann Biomed Eng 43, 515–528 (2015). https://doi.org/10.1007/s10439-014-1205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1205-3

Keywords

Navigation