Skip to main content

Fungal Communities for the Remediation of Environmental Pollutants

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Environmental pollution has been one of the major hazards for our entire planet since ages, with a substantial risk of biodiversity degradation, and many tragic disasters and calamities occur due to anthropogenic activities. Many conventional practices have been implemented for reduction and degradation of these contaminants present in agricultural wastes and industrial effluents. However, due to certain limitations of conventional methods, process of bioremediation has been trending due to its advantages like economical approach and conversion of various pollutants into non- or less hazardous one. Use of fungi provides cheaper, safer, and sustainable means for environmental remediation. Most fungi are ubiquitous and highly diverse in nature, which ensures their widespread applications. Recently, a number of studies have been investigated for bioremediation of organic and inorganic toxic pollutants such as dyes, heavy metals, aromatic compounds, plastic, pesticides, drugs, etc. using suitable fungal strains. Fungi act upon these contaminants through the process of biosorption, bioaccumulation, and biodegradation by producing extracellular enzymes. The present chapter is an attempt to summarize the various sources of pollution, their negative effects, and bioremediation applications of fungi to detoxify wide range of contaminants. Use of fungi for reclamation of environment can be highly advantageous and sustainable for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahim WM, Moawad H (2003) Enhancing bioremoval of textile dyes by eight fungal strains from media supplemented with gelatine wastes and sucrose. J Basic Microbiol 43(5):367–375

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123

    Article  Google Scholar 

  • Agarry SE, Latinwo GK, Dada EO, Owabor CN (2019) Bioremediation of crude oil-contaminated soil in the presence of nickel, zinc and cadmium heavy metals using bacterial and fungal consortia-bioaugmentation strategy. J Environ Treat 7(1):179–195

    Google Scholar 

  • Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5(1):1–9

    Article  Google Scholar 

  • Ahmad KS (2019) Carbendazole lithospheric adsorption, Saccharum officinarum-based remediation and microbial degradation in heterogeneously composed soils. Environ Earth Sci 78(1):31

    Article  CAS  Google Scholar 

  • Akhtar N, Mannan MAU (2020) Mycoremediation: expunging environmental pollutants. Biotechnol Rep 26:00452

    Google Scholar 

  • Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41(6):1366–1378

    Article  CAS  PubMed  Google Scholar 

  • Alam MZ, Mansor MF, Jalal KCA (2009) Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J Hazard Mater 162(2–3):708–715

    Article  CAS  PubMed  Google Scholar 

  • Albert Q, Baraud F, Leleyter L, Lemoine M, Heutte N, Rioult JP et al (2019) Use of soil fungi in the biosorption of three trace metals (cd, cu, Pb): promising candidates for treatment technology? Environ Technol 41(24):3166–3177

    Article  PubMed  CAS  Google Scholar 

  • Ali EH, Hashem M (2007) Removal efficiency of the heavy metals Zn (II), Pb (II) and cd (II) by Saprolegnia delica and Trichoderma viride at different pH values and temperature degrees. Mycobiology 35(3):135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N et al (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Alshehrei F (2017) Biodegradation of low density polyethylene by fungi isolated from Red Sea water. Int J Curr Microbiol App Sci 6:1703–1709

    Article  CAS  Google Scholar 

  • Alvarenga N, Birolli WG, Seleghim MH, Porto AL (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52

    Article  CAS  PubMed  Google Scholar 

  • Ameen F, Moslem M, Hadi S, Al-Sabri AE (2015) Biodegradation of low density polyethylene (LDPE) by mangrove fungi from the red sea coast. Prog Rubber Plast Recycl Technol 31(2):125–143

    Article  Google Scholar 

  • Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, Vasilyeva G et al (2015) Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. Int Biodeterior Biodegradation 105:7–12

    Article  CAS  Google Scholar 

  • Apohan E, Yesilada O (2005) Role of white rot fungus Funalia trogii in detoxification of textile dyes. J Basic Microbiol 45(2):99–105

    Article  CAS  PubMed  Google Scholar 

  • Arıca MY, Arpa Ç, Kaya B, Bektaş S, Denizli A, Genç Ö (2003) Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju. Bioresour Technol 89(2):145–154

    Article  PubMed  CAS  Google Scholar 

  • Arunprasath T, Sudalai S, Meenatchi R, Jeyavishnu K, Arumugam A (2019) Biodegradation of triphenylmethane dye malachite green by a newly isolated fungus strain. Biocatal Agric Biotechnol 17:672–679

    Article  Google Scholar 

  • Asgher M, Shah SAH, Ali M, Legge RL (2006) Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol 22(1):89–93

    Article  CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20(4):347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Baldrian P, Gabriel J, Nerud F, Zadražil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66(6):2471–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankole PO, Adekunle AA, Govindwar SP (2018) Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha: co-biomass decolorization of cibacron brilliant red 3B-A dye. Int J Biol Macromol 120:19–27

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS et al (2018) Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 199:218–222

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegradation 59(4):315–321

    Article  CAS  Google Scholar 

  • Bharath Y, Singh SN, Keerthiga G, Prabhakar R (2019) Mycoremediation of contaminated soil in MSW sites. In: Ghosh S (ed) Waste management and resource efficiency. Springer, Singapore, pp 321–329. https://doi.org/10.1007/978-981-10-7290-1_28

    Chapter  Google Scholar 

  • Bhatt P, Zhang W, Lin Z, Pang S, Huang Y, Chen S (2020) Biodegradation of allethrin by a novel fungus Fusarium proliferatum strain CF2, isolated from contaminated soils. Microorganisms 8(4):593

    Article  CAS  PubMed Central  Google Scholar 

  • Bhattacharya S, Das A (2011) Mycoremediation of Congo red dye by filamentous fungi. Braz J Microbiol 42(4):1526–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birolli WG, Santos DDA, Alvarenga N, Garcia AC, Romão LP, Porto AL (2018) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull 129(2):525–533

    Article  CAS  PubMed  Google Scholar 

  • Bisht J, Harsh NSK, Palni LMS, Agnihotri V, Kumar A (2019a) Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remed J 29(3):63–77

    Article  Google Scholar 

  • Bisht J, Harsh NSK, Palni LMS, Agnihotri V, Kumar A (2019b) Bioaugmentation of endosulfan contaminated soil in artificial bed treatment using selected fungal species. Biorem J 23(3):196–214

    Article  CAS  Google Scholar 

  • Casieri L, Varese GC, Anastasi A, Prigione V, Svobodova K, Marchisio VF et al (2008) Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol 53(1):44

    Article  CAS  Google Scholar 

  • Ceci A, Pinzari F, Russo F, Persiani AM, Gadd GM (2019) Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl Microbiol Biotechnol 103(1):53–68

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Duan Y, Dong J, Shen S, Si G, He F et al (2019) Bioremediation of hg-contaminated soil by combining a novel hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: performance and the response of soil fungal community. Sci Total Environ 671:676–684

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S (2020) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chem Eng J 385:123790

    Article  CAS  Google Scholar 

  • Cocaign A, Bui LC, Silar P, Tong LC, Busi F, Lamouri A et al (2013) Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants. Appl Environ Microbiol 79(15):4719–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146(1–2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Covino S, Stella T, Cajthaml T (2016) Mycoremediation of organic pollutants: principles, opportunities, and pitfalls. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Springer, Cham, pp 185–231. https://doi.org/10.1007/978-3-319-42852-9_8

    Chapter  Google Scholar 

  • Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88(11):1317–1323

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19(4):399–405

    Article  Google Scholar 

  • Dahiya D, Nigam PS (2020) Waste management by biological approach employing natural substrates and microbial agents for the remediation of dyes’ wastewater. Appl Sci 10(8):2958

    Article  CAS  Google Scholar 

  • de Lima DP, dos Santos ED, Marques MR, Giannesi GC, Beatriz A, Yonekawa MK et al (2018) Fungal bioremediation of pollutant aromatic amines. Curr Opin Green Sustain Chem 11:34–44

    Article  Google Scholar 

  • Deb VK, Rabbani A, Upadhyay S, Bharti P, Sharma H, Rawat DS et al (2020) Microbe-assisted phytoremediation in reinstating heavy metal-contaminated sites: concepts, mechanisms, challenges, and future perspectives. In: Arora P (ed) Microbial technology for health and environment. Springer, Singapore, pp 161–189. https://doi.org/10.1007/978-981-15-2679-4_6

    Chapter  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dey P, Mishra A, Malik A, Singh DK, von Bergen M, Jehmlich N (2020) Mechanistic insight to mycoremediation potential of a metal resistant fungal strain for removal of hazardous metals from multi-metal pesticide matrix. Environ Pollut 262:114255

    Article  CAS  PubMed  Google Scholar 

  • Dhami NK, Quirin MEC, Mukherjee A (2017) Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecol Eng 103:106–117

    Article  Google Scholar 

  • Dickson UJ, Coffey M, Mortimer RJG, Di Bonito M, Ray N (2019) Mycoremediation of petroleum contaminated soils: progress, prospects and perspectives. Environ Sci-Proc Imp 21(9):1446–1458

    CAS  Google Scholar 

  • Domka AM, Rozpądek P, Ważny R, Turnau K (2018) Mucor sp.—an endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol 59(1):24–37

    Article  PubMed  CAS  Google Scholar 

  • Domka AM, Rozpaądek P, Turnau K (2019) Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Front Microbiol 10:371

    Article  PubMed  PubMed Central  Google Scholar 

  • El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A (2017) Mycoremediation: decolourization potential of fungal ligninolytic enzymes. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer, Cham, pp 69–104. https://doi.org/10.1007/978-3-319-68957-9_5

    Chapter  Google Scholar 

  • El-Morsy EM, Nour El-Dein MM, El-Didamoney SMM (2013) Mucor racemosus as a biosorbent of metal ions from polluted water in Northern Delta of Egypt. Mycosphere 4(6):1118–1131

    Article  Google Scholar 

  • Fayeulle A, Veignie E, Schroll R, Munch JC, Rafin C (2019) PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms. J Soils Sediments 19(7):3056–3067

    Article  CAS  Google Scholar 

  • Fuentes MS, Briceño GE, Saez JM, Benimeli CS, Diez MC, Amoroso MJ (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. Biomed Res Int 2013:1–9

    Article  CAS  Google Scholar 

  • Gharieb MM, Al-Fakih AA, Ali MI (2014) Biosorption of Pb (II) and co (II) ions from aqueous solutions using pretreated Rhizopus oryzae (bread mold). Arab J Sci Eng 39(4):2435–2446

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Glenn AE, Karagianni EP, Ulndreaj Α, Boukouvala S (2010) Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family. FEBS Lett 584(14):3158–3164

    Article  CAS  PubMed  Google Scholar 

  • Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M et al (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396

    Article  CAS  PubMed  Google Scholar 

  • Gola D, Malik A, Namburath M, Ahammad SZ (2018) Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb (II). Environ Sci Pollut R 25(21):20486–20496

    Article  CAS  Google Scholar 

  • Goswami S, Vig K, Singh DK (2009) Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere 75(7):883–888

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Fuzisawa S, Hosogai T, Chang YC (2017) Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 7(34):20716–20723

    Article  CAS  Google Scholar 

  • Haradean JA, Ralph-Epps T, Whiteacre Z, Neumann S, Becker DM (2019) Mixtures of mycorrhizal fungi improve growth of Lactuca Sativa and reduce levels of zinc in contaminated soil. Fine Focus 5(1):65–74

    Article  Google Scholar 

  • Harry-asobara JL, Kamei I (2019) Characteristics of white-rot fungus Phlebia brevispora TMIC33929 and its growth-promoting bacterium Enterobacter sp. TN3W-14 in the decolorization of dye-contaminated water. Appl Biochem Biotechnol 189(4):1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Hoque E, Fritscher J (2019) Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Sci Rep 9(1):1–16

    Article  Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of fungal isolates for degradation of selected pesticides. BEPLS 2(4):50–53

    CAS  Google Scholar 

  • Iram S, Shabbir R, Zafar H, Javaid M (2015) Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng 40(7):1867–1873

    Article  CAS  Google Scholar 

  • Itoh K, Yatome C (2004) Decolorization and degradation of xanthene dyes by a white rot fungus Coriolus versicolor. J Environ Sci Health A 39(9):2383–2389

    Article  CAS  Google Scholar 

  • Jain A, Yadav S, Nigam VK, Sharma SR (2017) Fungal-mediated solid waste management: a review. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer, Cham, pp 153–170. https://doi.org/10.1007/978-3-319-68957-9_9

    Chapter  Google Scholar 

  • Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW et al (2008) Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36(2):114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins S, Quer AMI, Fonseca C, Varrone C (2019) Microbial degradation of plastics: new plastic degraders, mixed cultures and engineering strategies. In: Jamil N, Kumar P, Batool R (eds) Soil microenvironment for bioremediation and polymer production, pp 213–238. https://doi.org/10.1002/9781119592129.ch12

  • Johansson I, Van Bavel B (2003) Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Sci Total Environ 311(1–3):221–231

    Article  CAS  PubMed  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  • Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73(4):932–940

    Article  CAS  PubMed  Google Scholar 

  • Kartal SN, Munir E, Kakitani T, Imamura Y (2004) Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. J Wood Sci 50(2):182–188

    Article  CAS  Google Scholar 

  • Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44(16):6343–6349

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Roy A (2020) Bioremediation of heavy metals from wastewater using nanomaterials. Environment, Development and Sustainability, pp. 1–24

    Google Scholar 

  • Khan MA, Ghouri AM (2011) Environmental pollution: its effects on life and its remedies. Res World J Arts Sci Commer 2(2):276–285

    Google Scholar 

  • Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU et al (2019) Mycoremediation of heavy metal (cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191(9):585

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Patel V, Khan Z (2020) Bioremediation of dyes from textile and dye manufacturing industry effluent. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, pp 107–125. https://doi.org/10.1016/B978-0-12-818095-2.00005-9

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar VV (2017) Mycoremediation: a step toward cleaner environment. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer, Cham, pp 171–187. https://doi.org/10.1007/978-3-319-68957-9_10

    Chapter  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):e03170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar KK, Prasad MK, Sarma GVS, Murthy CV (2009) Removal of cd (II) from aqueous solution using immobilized Rhizomucor tauricus. J Microbial Biochem Technol 1(1):015–021

    Article  CAS  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 3: perspective for sustainable environments. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB et al (2018) The lancet commission on pollution and health. Lancet 391(10119):462–512

    Article  PubMed  Google Scholar 

  • Lee AH, Lee H, Heo YM, Lim YW, Kim CM, Kim GH et al (2020) A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess Biosyst Eng 14:1–17

    CAS  Google Scholar 

  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    Article  CAS  PubMed  Google Scholar 

  • Li S, Huang J, Mao J, Zhang L, He C, Chen G et al (2019) In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. Nanoscale Adv 1(1):168–176

    Article  CAS  Google Scholar 

  • Malachová K, Pavlícková Z, Novotný C, Svobodová K, Lednická D, Musílková E (2006) Reduction in the mutagenicity of synthetic dyes by successive treatment with activated sludge and the ligninolytic fungus, Irpex lacteus. Environ Mol Mutagen 47(7):533–540

    Article  PubMed  CAS  Google Scholar 

  • Malachova K, Rybkova Z, Sezimova H, Cerven J, Novotny C (2013) Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Res 47(19):7143–7148

    Article  CAS  PubMed  Google Scholar 

  • Malachová K, Novotný Č, Adamus G, Lotti N, Rybková Z, Soccio M et al (2020) Ability of Trichoderma hamatum isolated from plastics-polluted environments to attack petroleum-based, synthetic polymer films. PRO 8(4):467

    Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS et al (2019) Role of fungi in climate change abatement through carbon sequestration. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 3: perspective for sustainable environments. Springer, Cham, pp 283–295. https://doi.org/10.1007/978-3-030-25506-0_11

    Chapter  Google Scholar 

  • Manzetti S (2012) Eco toxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties. Environ Chem Lett 10(4):349–361

    Article  CAS  Google Scholar 

  • Maurya S, Naik SK, Choudhary JS, Kumar S (2019) Heavy metals scavenging potential of Trichoderma asperellum and Hypocrea nigricans isolated from acid soil of Jharkhand. Ind J Microbiol 59(1):27–38

    Article  CAS  Google Scholar 

  • Mazmanci MA, Unyayar A, Ekiz HI (2002) Decolorization of methylene blue by white rot fungus Coriolus versicolor. Fresenius Environ Bull 11(5):254–258

    CAS  Google Scholar 

  • Mbachu AE, Mbachu NA, Chukwura EI (2019) pH-dependent heavy metal toxicity differentials in fungal isolates during biodegradation of spent engine oil. Am J Curr Microbiol 7(1):1–11

    Google Scholar 

  • Mori T, Watanabe M, Taura H, Kuno T, Kamei I, Kondo R (2015) Degradation of chlorinated dioxins and polycyclic aromatic hydrocarbons (PAHs) and remediation of PAH-contaminated soil by the entomopathogenic fungus, Cordyceps militaris. J Environ Chem Eng 3(4):2317–2322

    Article  CAS  Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Munck C, Thierry E, Gräßle S, Chen SH, Ting ASY (2018) Biofilm formation of filamentous fungi Coriolopsis sp. on simple muslin cloth to enhance removal of triphenylmethane dyes. J Environ Manag 214:261–266

    Article  CAS  Google Scholar 

  • Muszynska E, Hanus-Fajerska E (2015) Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia J Biotechnol Comput Biol Bionanotechnol 96(4):265–271

    Google Scholar 

  • Nasseri S, Mazaheri AM, Noori SM, Rostami KH, Shariat M, Nadafi K (2002) Chromium removal from tanning effluent using biomass of Aspergillus oryzae. Pak J Biol Sci 5(10):1056–1059

    Article  Google Scholar 

  • Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA (2019) Myco-remediation of xenobiotic organic compounds for a sustainable environment: a critical review. Top Curr Chem 377(3):17

    Article  CAS  Google Scholar 

  • Ong GH, Ho XH, Shamkeeva S, Manasha Savithri Fernando AS, Wong LS (2017) Biosorption study of potential fungi for copper remediation from peninsular Malaysia. Remed J 27(4):59–63

    Article  Google Scholar 

  • Ortega SN, Nitschke M, Mouad AM, Landgraf MD, Rezende MO, Seleghim MH et al (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Pandey VC, Singh V (2019) Exploring the potential and opportunities of current tools for removal of hazardous materials from environments. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Amsterdam, Netherlands, pp 501–516

    Google Scholar 

  • Papinutti VL, Forchiassin F (2004) Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. FEMS Microbiology Lett 231(2):205–209

    Article  CAS  Google Scholar 

  • Park H, Min B, Jang Y, Kim J, Lipzen A, Sharma A et al (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103(19):8145–8155

    Article  CAS  PubMed  Google Scholar 

  • Pothuluri JV, Freeman JP, Heinze TM, Beger RD, Cerniglia CE (2000) Biotransformation of vinclozolin by the fungus Cunninghamella elegans. J Agric Food Chem 48(12):6138–6148

    Article  CAS  PubMed  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Pozdnyakova NN, Balandina SA, Dubrovskaya EV, Golubev CN, Turkovskaya OV (2018) Ligninolytic basidiomycetes as promising organisms for the mycoremediation of PAH-contaminated environments. IOP Conf Ser Earth Environ Sci 107(1):012071

    Article  Google Scholar 

  • Prasenjit B, Sumathi S (2005) Uptake of chromium by Aspergillus foetidus. J Mater Cycle Waste Manag 7(2):88–92

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, De Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–36. https://doi.org/10.1007/978-3-319-60063-5_8-1

  • Punnapayak H, Prasongsuk S, Messner K, Danmek K, Lotrakul P (2009) Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase from a tropical white rot fungus Ganoderma lucidum. Afr J Biotechnol 8(21):5897–5900

    Article  CAS  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Raina S, Roy A, Bharadvaja N (2020) Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environment Nanotechnology, Monitoring & Management 13:100278

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Reddy VR, Behera B (2006) Impact of water pollution on rural communities: an economic analysis. Ecol Econ 58(3):520–537

    Article  Google Scholar 

  • Robinson T, Nigam PS (2008) Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF). Appl Biochem Biotechnol 151(2–3):618

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Romero MC, Reinoso EH, Urrutia MI, Moreno Kiernan A (2006a) Biosorption of heavy metals by Talaromyces helicus: a trained fungus for copper and biphenyl detoxification. Electron J Biotechnol 9(3):221–226

    Google Scholar 

  • Romero ML, Terrazas E, Van Bavel B, Mattiasson B (2006b) Degradation of toxaphene by Bjerkandera sp. strain BOL13 using waste biomass as a co-substrate. Appl Microbiol Biotechnol 71(4):549–554

    Article  CAS  Google Scholar 

  • Roy A, Bharadvaja N (2019) Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biometric and Nanobiomaterials 8(2):130–140

    Google Scholar 

  • Roy AA, Bharadvaja N (2020) Removal of toxic pollutants using microbial fuel cells. In removal of toxic pollutants through microbial and tertiary treatment (pp. 153–177). Elsevier

    Google Scholar 

  • Rozman U, Kalčíková G, Marolt G, Skalar T, Gotvajn AŽ (2020) Potential of waste fungal biomass for lead and cadmium removal: characterization, biosorption kinetic and isotherm studies. Environ Technol Innov 18:100742

    Article  Google Scholar 

  • Rudakiya DM, Tripathi A, Gupte S, Gupte A (2019) Fungal bioremediation: a step towards cleaner environment. In: Satyanarayana T, Deshmukh S, Deshpande M (eds) Advancing frontiers in mycology & mycotechnology. Springer, Singapore, pp 229–249. https://doi.org/10.1007/978-981-13-9349-5_9

    Chapter  Google Scholar 

  • Russo F, Ceci A, Pinzari F, Siciliano A, Guida M, Malusà E et al (2019) Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. Appl Environ Microbiol 85(21):e01720–e01719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non-white rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    Article  CAS  Google Scholar 

  • Sánchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro-and microplastics biodegradation. Biotechnol Adv 40:107501

    Article  PubMed  CAS  Google Scholar 

  • Sangale MK, Shahnawaz M, Ade AB (2019) Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16):7220–7224

    Article  CAS  PubMed  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Schroer HW, Langenfeld KL, Li X, Lehmler HJ, Just CL (2017) Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp. Biodegradation 28(1):95–109

    Google Scholar 

  • Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18(6):845–853

    Article  Google Scholar 

  • Shahnawaz M, Sangale MK, Ade AB (2019) Ex situ bioremediation technology for plastic degradation. In: Bioremediation technology for plastic waste. Springer, Singapore, pp 77–83. https://doi.org/10.1007/978-981-13-7492-0_7

    Chapter  Google Scholar 

  • Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8(4):216

    Article  PubMed  PubMed Central  Google Scholar 

  • Shazia I, Uzma SG, Talat A (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2(12):66–73

    Google Scholar 

  • Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34(16):3384–3388

    Article  CAS  Google Scholar 

  • Sindujaa P, Padmapriya M, Pramila R, Ramesh KV (2011) Bio-degradation of low density polyethylene (LDPE) by fungi isolated from marine water. Res J Biol Sci 6(4):141–145

    Google Scholar 

  • Singh P, Dhumal G (2019) Effect of pollution on physical and chemical properties of soil. In: Kumar A, Sharma S (eds) Microbes and enzymes in soil health and bioremediation. Springer, Singapore, pp 75–97. https://doi.org/10.1007/978-981-13-9117-0_4

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020a) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Singh RK, Tripathi R, Ranjan A, Srivastava AK (2020b) Fungi as potential candidates for bioremediation. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, pp 177–191. https://doi.org/10.1016/B978-0-12-818095-2.00009-6

  • Singh T, Bhatiya AK, Mishra PK, Srivastava N (2020c) An effective approach for the degradation of phenolic waste: phenols and cresols. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, pp 203–243. https://doi.org/10.1016/B978-0-12-818095-2.00011-4

  • Srivastava A, Singh M, Singh S, Singh SP (2020) Recent advances in micro-extraction based analytical approaches for pesticides analysis in environmental samples. In: Gupta T, Singh S, Rajput P, Agarwal A (eds) Measurement, analysis and remediation of environmental pollutants. Springer, Singapore, pp 281–231. https://doi.org/10.1007/978-981-15-0540-9_14

    Chapter  Google Scholar 

  • Suazo-Madrid A, Morales-Barrera L, Aranda-García E, Cristiani-Urbina E (2011) Nickel (II) biosorption by Rhodotorula glutinis. J Ind Microbiol Biotechnol 38(1):51–64

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D, Sharma R, Jaglan S, Vats R, Kumar R, Mahnashi MH et al (2020) Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environ Technol Innov 17:100604

    Article  Google Scholar 

  • Taştan BE, Dönmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Physiol 118:33–37

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Tonelli FMP, Tonelli FCP (2020) Role of modern innovative techniques for assessing and monitoring heavy metal and pesticide pollution in different environments. In: Bhat R, Hakeem K, Dervash M (eds) Bioremediation and biotechnology, vol 2. Springer, Cham, pp 25–45. https://doi.org/10.1007/978-3-030-40333-1_3

    Chapter  Google Scholar 

  • Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP et al (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4(2):266–275

    Article  Google Scholar 

  • Varjani SJ, Patel RK (2017) Fungi: a remedy to eliminate environmental pollutants. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer, Cham, pp 53–67. https://doi.org/10.1007/978-3-319-68957-9_4

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma A, Roy A, Bharadvaja N (2020) Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier

    Google Scholar 

  • Vieira YA, Vilar D, Cruz IA, Menezes DB, Fernandes CD, Torres NH et al (2019) Fungi treatment of synthetic dyes by using agro-industrial waste. In: Chandra R, Sobti RC (eds) Microbes for sustainable development and bioremediation. CRC Press, pp 243–255. https://doi.org/10.1201/9780429275876-14

  • Vignesh R, Deepika RC, Manigandan P, Janani R (2016) Screening of plastic degrading microbes from various dumped soil samples. Int Res J Eng Tech 3(4):2493–2498

    Google Scholar 

  • Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN et al (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367

    Article  CAS  PubMed  Google Scholar 

  • Vitali VMV, Machado KMG, Andrea MMD, Bononi VLR (2006) Screening mitosporic fungi for organochlorides degradation. Braz J Microbiol 37(3):256–261

    Article  CAS  Google Scholar 

  • Wang X, Song L, Li Z, Ni Z, Bao J, Zhang H (2020) The remediation of chlorpyrifos-contaminated soil by immobilized white-rot fungi. J Serb Chem Soc 85:130

    Article  CAS  Google Scholar 

  • Wolfand JM, LeFevre GH, Luthy RG (2016) Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor. Environ Sci Process Impacts 18(10):1256–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu YR, He TT, Lun JS, Maskaoui K, Huang TW, Hu Z (2009) Removal of benzo [a] pyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25(8):1395–1401

    Article  CAS  Google Scholar 

  • Wu YR, Luo ZH, Vrijmoed LLP (2010) Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol 101:9666–9672

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Chen X, Dai R, Luo Y, Ma P, Ni S et al (2016) Anaerobic digestion of recalcitrant textile dyeing sludge with alternative pretreatment strategies. Bioresour Technol 222:252–260

    Article  CAS  PubMed  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314(2):140–146

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2019) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. Volume 3: perspective for sustainable environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Gupta VK, Yadav N (2020c) Microbial biotechnology approaches to monuments of cultural heritage. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020d) Microbiomes of extreme environments, vol-1: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020e) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Ye JS, Yin H, Qiang J, Peng H, Qin HM, Zhang N et al (2011) Biodegradation of anthracene by Aspergillus fumigatus. J Hazard Mater 185(1):174–181

    Article  CAS  PubMed  Google Scholar 

  • Yesiladalı SK, Pekin G, Bermek H, Arslan-Alaton I, Orhon D, Tamerler C (2006) Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World J Microbiol Biotechnol 22(10):1027–1031

    Article  CAS  Google Scholar 

  • Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV (2015) Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci Pollut Res 22(2):1034–1042

    Article  CAS  Google Scholar 

  • Zaman D, Tiwari MK, Mishra S (2020) Low-cost adsorptive removal techniques for pharmaceuticals and personal care products. In: Gupta T, Singh S, Rajput P, Agarwal A (eds) Measurement, analysis and remediation of environmental pollutants. Springer, Singapore, pp 397–421. https://doi.org/10.1007/978-981-15-0540-9_19

    Chapter  Google Scholar 

  • Zapana-Huarache SV, Romero-Sánchez CK, Gonza AD, Torres-Huaco FD, Rivera AL (2020) Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 51(1):271–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yin C, Abbas N, Mao Z, Zhang Y (2020a) Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci Rep 10(1):1–9

    CAS  Google Scholar 

  • Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H et al (2020b) Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 704:135931

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lou X, Zhang H, Ren W, Tang M (2020c) Effects of sodium sulfide application on the growth of Robinia pseudoacacia, heavy metal immobilization, and soil microbial activity in Pb–Zn polluted soil. Ecotoxicol Environ Saf 197:110563

    Article  CAS  PubMed  Google Scholar 

  • Zhao RB, Bao HY, Liu YX (2010) Isolation and characterization of Penicillium oxalicum ZHJ6 for biodegradation of methamidophos. Agric Sci China 9(5):695–703

    Article  CAS  Google Scholar 

  • Zhao Q, Li H, An F (2020) Isolation and identification of lead-resistant fungus and its adsorption characteristics to Pb2+. Southwest China J Agric Sci 33(2):401–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Roy, A. (2021). Fungal Communities for the Remediation of Environmental Pollutants. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-68260-6_6

Download citation

Publish with us

Policies and ethics