Skip to main content

Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides

  • Chapter
  • First Online:
Biosurfactants for the Biobased Economy

Abstract

Surfactin, one of the best lipopeptide surfactants, was first isolated from Bacillus sp. in 1969. Since then, Bacillus sp. has been a remarkable source of bioactive lipopeptides, with a huge natural biodiversity. Lipopeptides from Bacillus sp. are now divided into three main families: surfactin, fengycin, and iturin. The peptide moiety of these lipopeptides is synthesised by huge multi-enzymatic proteins called nonribosomal peptide synthetases, which are responsible for the peptide biodiversity of these lipopeptides. Moreover, the fatty acid chain also encompasses a high diversity with different β-hydroxy or β-amino fatty acid chains of different lengths, isomery, or saturation, which can be incorporated. After describing the mode of synthesis of the different families of lipopeptides produced by Bacillus sp. and their biodiversity, this chapter describes how this lipopeptide biodiversity can be increased using genetic engineering and how the lipopeptides can be overproduced and purified. The high biodiversity of lipopeptides induces a broad range of physicochemical properties, which can be linked to multiple biological activities with many applications in different sectors. The increasing understanding of the mode of biosynthesis of these lipopeptides should lead to the development of novel compounds with increased properties and applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaspar F, Neubauer P, Gimpel M (2019) Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod 82:2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110

    Article  PubMed  CAS  Google Scholar 

  2. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496. https://doi.org/10.1021/np000169q

    Article  PubMed  CAS  Google Scholar 

  3. Batrakov SG, Rodionova TA, Esipov SE, Polyakov NB, Sheichenko VI, Shekhovtsova NV, Lukin SM, Panikov NS, Nikolaev YA (2003) A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. Biochim Biophys Acta Mol Cell Biol Lipids 1634:107–115. https://doi.org/10.1016/j.bbalip.2003.09.004

    Article  CAS  Google Scholar 

  4. Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312. https://doi.org/10.1007/s00203-007-0250-9

    Article  PubMed  CAS  Google Scholar 

  5. Cochrane JR, Exner CJ, Jolliffe KA (2015) Total synthesis and reassignment of the structures of the antimicrobial lipodepsipeptides circulocin γ and δ. J Org Chem 80:4491–4500. https://doi.org/10.1021/acs.joc.5b00349

    Article  PubMed  CAS  Google Scholar 

  6. He H, Shen B, Korshalla J, Carter GT (2001) Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154. Tetrahedron 57:1189–1195. https://doi.org/10.1016/S0040-4020(00)01135-2

    Article  CAS  Google Scholar 

  7. Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Lotfi SS, Amoozegar MA (2010) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878. https://doi.org/10.1007/s11274-009-0246-5

    Article  CAS  Google Scholar 

  8. Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81:6601–6609. https://doi.org/10.1128/AEM.01639-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gao L, Han J, Liu H, Qu X, Lu Z, Bie X (2017) Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 110:1007–1018. https://doi.org/10.1007/s10482-017-0874-y

    Article  CAS  Google Scholar 

  10. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis – principles and prospects reviews. Angew Chem Int 56:3770–3823. https://doi.org/10.1002/anie.201609079

    Article  CAS  Google Scholar 

  11. Lipmann F, Gevers W, Kleinkauf H, Roskoski R (1971) Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol 35:1–34. https://doi.org/10.1002/9780470122808

    Article  PubMed  CAS  Google Scholar 

  12. Flissi A, Ricart E, Chevalier M, Dufresne Y, Michalik J, Jacques P, Flahaut C, Pupin M (2020) Norine: update of the nonribosomal peptide resource. Nucleic Acids Res 48:465–469. https://doi.org/10.1093/nar/gkz1000

    Article  CAS  Google Scholar 

  13. Mootz HD, Finking R, Marahiel MA (2001) 4′-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 276:37289–37298. https://doi.org/10.1074/jbc.M103556200

    Article  PubMed  CAS  Google Scholar 

  14. Quadri LEN, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carder protein domains in peptide synthetases. Biochemistry 37:1585–1595. https://doi.org/10.1021/bi9719861

    Article  PubMed  CAS  Google Scholar 

  15. Bloudoff K, Schmeing TM (2017) Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys Acta Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2017.05.010

  16. Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT (2005) Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 127:14986–14987. https://doi.org/10.1021/ja055247g

    Article  PubMed  CAS  Google Scholar 

  17. Hansen DB, Bumpus SB, Aron ZD, Kelleher NL, Walsh CT (2007) The leading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J Am Chem Soc 129:6366–6367. https://doi.org/10.1021/ja070890j

    Article  PubMed  CAS  Google Scholar 

  18. Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 6:243–248

    Article  CAS  Google Scholar 

  19. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280

    Article  PubMed  CAS  Google Scholar 

  20. Bonmatin J-M, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556. https://doi.org/10.2174/138620703106298716

    Article  PubMed  CAS  Google Scholar 

  21. Peypoux F, Bonmatin J-M, Labbé H, Das BC, Ptak M, Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur J Biochem 202:101–106. https://doi.org/10.1111/j.1432-1033.1991.tb16349.x

    Article  PubMed  CAS  Google Scholar 

  22. Liu XY, Yang SZ, Mu BZ (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochem 44:1144–1151. https://doi.org/10.1016/j.procbio.2009.06.014

    Article  CAS  Google Scholar 

  23. Li Y, Yang S, Mu B (2010) The surfactin and lichenysin isoforms produced by Bacillus licheniformis HSN 221. Anal Lett 43:929–940. https://doi.org/10.1080/00032710903491047

    Article  CAS  Google Scholar 

  24. Zhuravleva OI, Afiyatullov SS, Ermakova SP, Nedashkovskaya OI, Dmitrenok PS, Denisenko VA, Kuznetsova TA (2010) New C14-surfactin methyl ester from the marine bacterium Bacillus pumilus KMM 456. Russ Chem Bull 59:2137–2142. https://doi.org/10.1007/s11172-010-0369-8

    Article  CAS  Google Scholar 

  25. Honma M, Tanaka K, Konno K, Tsuge K, Okuno T, Hashimoto M (2012) Termination of the structural confusion between plipastatin A1 and fengycin IX. Bioorg Med Chem 20:3793–3798. https://doi.org/10.1016/j.bmc.2012.04.040

    Article  PubMed  CAS  Google Scholar 

  26. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:1–12. https://doi.org/10.1186/1475-2859-8-63

    Article  CAS  Google Scholar 

  27. Ben Ayed H, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49:1699–1707. https://doi.org/10.1016/j.procbio.2014.07.001

    Article  CAS  Google Scholar 

  28. Troyano Pueyo M, Bloch Jr C, Maria Carmona-Ribeiro A, di Mascio P (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microb Ecol 57. https://doi.org/10.1007/s00248-008-9464-x

  29. Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2 produced by Bacillus cereus BMG302-fF67 III. Structural elucidation of plipastatins. J Antibiot (Tokyo) 39:755–761. https://doi.org/10.7164/antibiotics.39.755

    Article  PubMed  CAS  Google Scholar 

  30. Vanittanakom N, Loeffler W (1986) Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) XXXIX:888–901. https://doi.org/10.7164/antibiotics.39.888

    Article  Google Scholar 

  31. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41. https://doi.org/10.1016/S1074-5521(99)80078-7

    Article  PubMed  CAS  Google Scholar 

  32. Lin TP, Chen CL, Chang LK, Tschen JSM, Liu ST (1999) Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J Bacteriol 181:5060–5067. https://doi.org/10.1128/jb.181.16.5060-5067.1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin TP, Chen CL, Fu HC, Wu CY, Lin GH, Huang SH, Chang LK, Liu ST (2005) Functional analysis of fengycin synthetase FenD. Biochim Biophys Acta Gene Struct Expr 1730:159–164. https://doi.org/10.1016/j.bbaexp.2005.02.005

    Article  CAS  Google Scholar 

  34. Shu HY, Lin GH, Wu YC, Tschen JSM, Liu ST (2002) Amino acids activated by fengycin synthetase FenE. Biochem Biophys Res Commun 292:789–793. https://doi.org/10.1006/bbrc.2002.6729

    Article  PubMed  CAS  Google Scholar 

  35. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C J Biosci 54:859–866. https://doi.org/10.1515/znc-1999-1102

    Article  PubMed  CAS  Google Scholar 

  36. Lin GH, Chen CL, Tschen JSM, Tsay SS, Chang YS, Liu ST (1998) Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis. J Bacteriol 180:1338–1341. https://doi.org/10.1128/jb.180.5.1338-1341.1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen L, Wang N, Wang X, Hu J, Wang S (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101:8822–8827. https://doi.org/10.1016/j.biortech.2010.06.054

    Article  PubMed  CAS  Google Scholar 

  38. Esumi Y, Suzuki Y, Itoh Y, Chijimatsu M, Uramoto M, Kimura KI, Nakayama S, Yoshihama M, Ichikawa T, Haramo T, Fujishige J (2003) SNA-60-367 components, new peptide enzyme inhibitors of aromatase: structure of the fatty acid side chain and amino acid sequence by mass spectrometry. J Antibiot (Tokyo) 56:716–720. https://doi.org/10.7164/antibiotics.56.716

    Article  PubMed  CAS  Google Scholar 

  39. Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 23:1716–1728. https://doi.org/10.1007/s13361-012-0437-4

    Article  PubMed  CAS  Google Scholar 

  40. Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M (2013) Fengycin C produced by Bacillus subtilis EA-CB0015. J Nat Prod 76:503–509. https://doi.org/10.1021/np300574v

    Article  PubMed  CAS  Google Scholar 

  41. Li X-Y, Mao Z-C, Wang Y-H, Wu Y-X, He Y-Q, Long C-L (2012) LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1. J Mol Microbiol Biotechnol 22:83–93. https://doi.org/10.1159/000338530

    Article  PubMed  CAS  Google Scholar 

  42. Ait Kaki A, Smargiasso N, Ongena M, Kara Ali M, Moula N, De Pauw E, Kacem Chaouche N (2020) Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a Salt Lake of Eastern Algeria. Curr Microbiol 77:443–451. https://doi.org/10.1007/s00284-019-01855-w

    Article  PubMed  CAS  Google Scholar 

  43. Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949. https://doi.org/10.1111/j.1365-2672.2004.02356.x

    Article  PubMed  CAS  Google Scholar 

  44. Delcambe L, Devignat R (1950) L’iturine, nouvel antibiotique produit par un Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434

    PubMed  CAS  Google Scholar 

  45. Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978) Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996. https://doi.org/10.1021/bi00612a018

    Article  PubMed  CAS  Google Scholar 

  46. Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698. https://doi.org/10.1016/S0031-9422(02)00365-5

    Article  PubMed  CAS  Google Scholar 

  47. Winkelmann G, Allgaier H, Lupp R, Jung G (1983) Iturin al – a new long chain iturin a possessing an unusual high content of c16-β-amino acids. J Antibiot (Tokyo) 36:1451–1457. https://doi.org/10.7164/antibiotics.36.1451

    Article  PubMed  CAS  Google Scholar 

  48. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. https://doi.org/10.1016/S0038-0717(02)00027-5

    Article  CAS  Google Scholar 

  49. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Biosurfactants, pp 57–91. https://doi.org/10.1007/978-3-642-14490-5

    Chapter  Google Scholar 

  50. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299. https://doi.org/10.1073/pnas.96.23.13294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273. https://doi.org/10.1128/JB.183.21.6265-6273.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174. https://doi.org/10.1016/0300-483X(94)90159-7

    Article  PubMed  CAS  Google Scholar 

  54. Peypoux F, Besson F, Michel G, Delcambe L, Das BC (1978) Structure de l’iturine C de Bacillus subtilis. Tetrahedron 34:1147–1152. https://doi.org/10.1016/0040-4020(78)80138-0

    Article  CAS  Google Scholar 

  55. Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of Bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327. https://doi.org/10.1111/j.1432-1033.1981.tb06405.x

    Article  PubMed  CAS  Google Scholar 

  56. Besson F, Peypoux F, Michel G, Delcambe L (1977) Structure de la bacillomycine L, antibiotique de Bacillus subtils. Eur J Biochem 77:61–67. https://doi.org/10.1111/j.1432-1033.1977.tb11641.x

    Article  PubMed  CAS  Google Scholar 

  57. Eshita S, Roberto N, Beale J, Mamiya B, Workman R (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247. https://doi.org/10.7164/antibiotics.48.1240

    Article  PubMed  CAS  Google Scholar 

  58. Volpon L, Tsan P, Majer Z, Vass E, Hollósi M, Noguéra V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of l-Asn1 in the natural iturinic antibiotics. Spectrochim Acta Part A Mol Biomol Spectrosc 67:1374–1381. https://doi.org/10.1016/j.saa.2006.10.027

    Article  CAS  Google Scholar 

  59. Peypoux F, Marion D, Maget-Dana R, Ptak M, Das BC, Michel G (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335–340. https://doi.org/10.1111/j.1432-1033.1985.tb09307.x

    Article  PubMed  CAS  Google Scholar 

  60. Peypoux F, Pommier MT, Michel G, Marion D, Ptak M, Das BC (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot (Tokyo) 39:636–641. https://doi.org/10.7164/antibiotics.39.636

    Article  PubMed  CAS  Google Scholar 

  61. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot (Tokyo) 65:317–322. https://doi.org/10.1038/ja.2012.19

    Article  PubMed  CAS  Google Scholar 

  62. Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclère V, Wathelet B, Hacene H, Jacques P (2011) Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl Microbiol Biotechnol 92:571–581. https://doi.org/10.1007/s00253-011-3453-6

    Article  PubMed  CAS  Google Scholar 

  63. Béchet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclére V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95:593–600. https://doi.org/10.1007/s00253-012-4181-2

    Article  PubMed  CAS  Google Scholar 

  64. Gélis-Jeanvoine S, Canette A, Gohar M, Caradec T, Lemy C, Gominet M, Jacques P, Lereclus D, Slamti L (2017) Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis. Res Microbiol 168:356–368. https://doi.org/10.1016/j.resmic.2016.06.002

    Article  PubMed  CAS  Google Scholar 

  65. Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99:1897–1910. https://doi.org/10.1007/s00253-014-6195-4

    Article  PubMed  CAS  Google Scholar 

  66. Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G (2016) Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ Microbiol 18:2634–2645. https://doi.org/10.1111/1462-2920.13405

    Article  PubMed  CAS  Google Scholar 

  67. Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17. https://doi.org/10.1186/s12864-016-3224-y

  68. Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684

    Article  PubMed  CAS  Google Scholar 

  69. Grangemard I, Peypoux F, Wallach J, Das BC, Labbé H, Caille A, Genest M, Maget-Dana R, Ptak M, Bonmatin JM (1997) Lipopeptides with improved properties: structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. J Pept Sci 3:145–154. https://doi.org/10.1002/(SICI)1099-1387(199703)3:2<145::AID-PSC96>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  70. Peypoux F, Bonmatin J, Labbe H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G, De Chimie I, Microbienne LDB, Claude U, Lyon B (1994) [Ala4]Surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96

    Article  PubMed  CAS  Google Scholar 

  71. Moran S, Rai DK, Clark BR, Murphy CD (2009) Precursor-directed biosynthesis of fluorinated iturin A in Bacillus spp. Org Biomol Chem 7:644–646. https://doi.org/10.1039/b816345f

    Article  PubMed  CAS  Google Scholar 

  72. O’Connor NK, Hudson AS, Cobb SL, O’Neil D, Robertson J, Duncan V, Murphy CD (2014) Novel fluorinated lipopeptides from Bacillus sp. CS93 via precursor-directed biosynthesis. Amino Acids 46:2745–2752. https://doi.org/10.1007/s00726-014-1830-z

    Article  PubMed  CAS  Google Scholar 

  73. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302. https://doi.org/10.14743/apem2017.1.239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dhali D, Coutte F, Argüelles A, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren J, de Sousa J, Versari C, Jacques P (2017) Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14isoform. Biotechnol J 12:1–23. https://doi.org/10.1002/biot.201600574

    Article  CAS  Google Scholar 

  75. Wang C, Cao Y, Wang Y, Sun L, Song H (2019) Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1139-4

  76. Goss RJM, Shankar S, Fayad AA (2012) The generation of “unNatural” products: synthetic biology meets synthetic chemistry. Nat Prod Rep 29:870–889. https://doi.org/10.1039/c2np00001f

    Article  PubMed  CAS  Google Scholar 

  77. Kirschning A, Hahn F (2012) Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries. Angew Chem Int Ed 51:4012–4022. https://doi.org/10.1002/anie.201107386

    Article  CAS  Google Scholar 

  78. Winn M, Fyans JK, Zhuo Y, Micklefield J (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep. https://doi.org/10.1039/c5np00099h

  79. Kalb D, Lackner G, Hoffmeister D (2014) Functional and phylogenetic divergence of fungal adenylate-forming reductases. Appl Environ Microbiol 80:6175–6183. https://doi.org/10.1128/AEM.01767-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. https://doi.org/10.1016/S1074-5521(99)80082-9

    Article  PubMed  CAS  Google Scholar 

  81. Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718–9726. https://doi.org/10.1021/bi0259406

    Article  PubMed  CAS  Google Scholar 

  82. Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169:404–410. https://doi.org/10.1007/s002030050590

    Article  PubMed  CAS  Google Scholar 

  83. Stachelhaus T, Schneider A, Marahiel MA (1996) Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol 52:177–186. https://doi.org/10.1016/0006-2952(96)00111-6

    Article  PubMed  CAS  Google Scholar 

  84. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72. https://doi.org/10.1126/science.7604280

    Article  PubMed  CAS  Google Scholar 

  85. Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981. https://doi.org/10.1021/ja027276m

    Article  PubMed  CAS  Google Scholar 

  86. Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H (2016) Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 16:31. https://doi.org/10.1186/s12866-016-0645-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bozhüyük KAJ, Fleischhacker F, Linck A, Wesche F, Tietze A, Niesert CP, Bode HB (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem 10:275–281. https://doi.org/10.1038/NCHEM.2890

    Article  PubMed  Google Scholar 

  88. Bozhüyük KAJ, Linck A, Tietze A, Kranz J, Wesche F, Nowak S, Fleischhacker F, Shi YN, Grün P, Bode HB (2019) Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 11:653–661. https://doi.org/10.1038/s41557-019-0276-z

    Article  PubMed  CAS  Google Scholar 

  89. Brown AS, Calcott MJ, Owen JG, Ackerley DF (2018) Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep. https://doi.org/10.1039/c8np00036k

  90. Linne U, Doekel S, Marahiel MA (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases †. Biochemistry:15824–15834

    Google Scholar 

  91. Lundy TA, Mori S, Garneau-Tsodikova S (2018) Engineering bifunctional enzymes capable of adenylating and selectively methylating the side chain or core of amino acids. ACS Synth Biol 7:399–404. https://doi.org/10.1021/acssynbio.7b00426

    Article  PubMed  CAS  Google Scholar 

  92. Jiao S, Li X, Yu H, Yang H, Li X, Shen Z (2017) In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 114:832–842. https://doi.org/10.1002/bit.26197

    Article  PubMed  CAS  Google Scholar 

  93. Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, Hausmann R (2016) Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production. J Biotechnol 224:14–17. https://doi.org/10.1016/j.jbiotec.2016.03.002

    Article  PubMed  CAS  Google Scholar 

  94. Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S (2019) Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1121-1

  95. Huigang S, Fengxia L, Chong Z, Xiaomei B, Guoqiang C, Zhaoxin L (2014) Improvement of fengycin production by bacillus amyloliquefaciens via promoter replacement at the fengycin operon with the p59 and PrepU promoters. J Pure Appl Microbiol 8:1071–1077

    CAS  Google Scholar 

  96. Tsuge K, Ohata Y, Shoda M (2001) Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 45:3566–3573. https://doi.org/10.1128/AAC.45.12.3566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Xu Y, Cai D, Zhang H, Gao L, Yang Y, Gao J, Li Y, Yang C, Ji Z, Yu J, Chen S (2020) Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 90:50–57. https://doi.org/10.1016/j.procbio.2019.11.017

    Article  CAS  Google Scholar 

  98. Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M (2005) The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 187:6659–6667. https://doi.org/10.1128/JB.187.19.6659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X (2015) DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol Res 178:42–50. https://doi.org/10.1016/j.micres.2015.06.006

    Article  PubMed  CAS  Google Scholar 

  100. Zhang Z, Ding ZT, Zhong J, Zhou JY, Shu D, Luo D, Yang J, Tan H (2017) Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes. Lett Appl Microbiol 64:452–458. https://doi.org/10.1111/lam.12739

    Article  PubMed  CAS  Google Scholar 

  101. Coutte F, Niehren J, Dhali D, John M, Versari C, Jacques P (2015) Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol J 10:1216–1234. https://doi.org/10.1002/biot.201400541

    Article  PubMed  CAS  Google Scholar 

  102. Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729. https://doi.org/10.1111/j.1365-2958.2006.05059.x

  103. Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci 106:280–285. https://doi.org/10.1073/pnas.0810940106

    Article  PubMed  Google Scholar 

  104. Lopez D, Vlamakis H, Losick R, Kolter R (2009) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638. https://doi.org/10.1101/gad.1813709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhang Y, Nakano S, Choi SY, Zuber P (2006) Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression. J Bacteriol 188:4300–4311. https://doi.org/10.1128/JB.00220-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ohsawa T, Tsukahara K, Sato T, Ogura M (2006) Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 139:203–211. https://doi.org/10.1093/jb/mvj023

    Article  PubMed  CAS  Google Scholar 

  107. Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO (2012) Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol Bioeng 109:2349–2356. https://doi.org/10.1002/bit.24524

    Article  PubMed  CAS  Google Scholar 

  108. Besson F, Hourdou ML (1986) Effect of amino acids on the biosynthesis of beta-amino acids, constituents of Bacillomycins F. J Antibiot (Tokyo) 40:221–223

    Article  Google Scholar 

  109. Peng W, Zhong J, Yang J, Ren Y, Xu T, Xiao S, Zhou J, Tan H (2014) The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A. Microb Cell Fact 13:1–10. https://doi.org/10.1186/1475-2859-13-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wu J, Liao J, Shieh C, Hsieh F, Liu Y (2018) Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1. J Biosci Bioeng 126:630–635. https://doi.org/10.1016/j.jbiosc.2018.05.002

    Article  PubMed  CAS  Google Scholar 

  111. Yue H, Zhong J, Li Z, Zhou J, Yang J, Wei H, Shu D, Luo D, Tan H (2021) Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology. 3 Biotech 11

    Google Scholar 

  112. Wu Q, Zhi Y, Xu Y (2019) Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab Eng 52:87–97. https://doi.org/10.1016/j.ymben.2018.11.004

    Article  PubMed  CAS  Google Scholar 

  113. Li X, Yang H, Zhang D, Li X, Yu H, Shen Z (2015) Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. J Ind Microbiol Biotechnol 42:93–103. https://doi.org/10.1007/s10295-014-1527-z

    Article  PubMed  CAS  Google Scholar 

  114. Maass D, Moya Ramírez I, García Román M, Jurado Alameda E, Ulson de Souza AA, Borges Valle JA, Altmajer Vaz D (2016) Two-phase olive mill waste (alpeorujo) as carbon source for biosurfactant production. J Chem Technol Biotechnol 91:1990–1997. https://doi.org/10.1002/jctb.4790

    Article  CAS  Google Scholar 

  115. Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 112:163–172. https://doi.org/10.1385/ABAB:112:3:163

    Article  CAS  Google Scholar 

  116. Cooper DG, Macdonald CR, Duff SJBB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412. https://doi.org/10.1128/aem.42.3.408-412.1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol 28:346–354. https://doi.org/10.1016/S0141-0229(00)00327-6

    Article  PubMed  CAS  Google Scholar 

  118. Yeh MS, Wei YH, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805. https://doi.org/10.1016/j.procbio.2006.03.027

    Article  CAS  Google Scholar 

  119. Gong G, Zheng Z, Chen H, Yuan C, Wang P, Yao L, Yu Z (2009) Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol Biotechnol 47:27–31

    CAS  Google Scholar 

  120. Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75. https://doi.org/10.1016/j.jbiotec.2007.05.025

    Article  PubMed  CAS  Google Scholar 

  121. Chenikher S, Guez JS, Coutte F, Pekpe M, Jacques P, Cassar JP (2010) Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem 45:1800–1807. https://doi.org/10.1016/j.procbio.2010.06.001

    Article  CAS  Google Scholar 

  122. Chen C-Y, Baker SC, Darton RC (2006) Continuous production of biosurfactant with foam fractionation. J Chem Technol Biotechnol 81:1915–1922. https://doi.org/10.1002/jctb.1624

    Article  CAS  Google Scholar 

  123. Jacques P, Savadogo A (2014) Handbook of indigenous foods involving alkaline fermentation. In: Sarkar PK, Nout MJR (eds) Handbook of indigenous foods involving alkaline fermentation, the fermented foods and beverages series. CRC Press, Taylor & Francis Group, pp 504–514

    Google Scholar 

  124. Savadogo A, Tapi A, Chollet M, Wathelet B, Traoré AS, Jacques P (2011) Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using polymerase chain reaction and matrix assisted laser desorption/ionization-mass spectrometry methods. Int J Food Microbiol 151:299–306. https://doi.org/10.1016/j.ijfoodmicro.2011.09.022

    Article  PubMed  CAS  Google Scholar 

  125. Ohno A, Ano T, Shoda M (1995) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80:517–519. https://doi.org/10.1016/0922-338X(96)80930-5

    Article  CAS  Google Scholar 

  126. Ohno A, Ano T, Shoda M (1995) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214. https://doi.org/10.1002/bit.260470212

    Article  PubMed  CAS  Google Scholar 

  127. Fonseca De Faria A, Teodoro-Martinez DS, De Oliveira Barbosa GN, Gontijo Vaz B, Serrano Silva Í, Garcia JS, Tótola MR, Eberlin MN, Grossman M, Alves OL, Regina Durrant L (2011) Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001

    Article  CAS  Google Scholar 

  128. Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59. https://doi.org/10.3389/fmicb.2015.00059

    Article  PubMed  PubMed Central  Google Scholar 

  129. Moya Ramírez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, García Román M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236. https://doi.org/10.1016/j.biortech.2015.09.012

    Article  PubMed  CAS  Google Scholar 

  130. Paraszkiewicz K, Bernat P, Kuśmierska A, Chojniak J, Płaza G (2018) Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manage 209:65–70. https://doi.org/10.1016/j.jenvman.2017.12.033

    Article  PubMed  CAS  Google Scholar 

  131. Zhu Z, Zhang G, Luo Y, Ran W, Shen Q (2012) Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol 112:254–260. https://doi.org/10.1016/j.biortech.2012.02.057

    Article  PubMed  CAS  Google Scholar 

  132. Yeh MS, Wei YH, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog 21:1329–1334. https://doi.org/10.1021/bp050040c

    Article  PubMed  CAS  Google Scholar 

  133. Chtioui O, Dimitrov K, Gancel F, Nikov I (2010) Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochem 45:1795–1799. https://doi.org/10.1016/j.procbio.2010.05.012

    Article  CAS  Google Scholar 

  134. Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978. https://doi.org/10.1016/j.procbio.2009.04.023

    Article  CAS  Google Scholar 

  135. Fahim S, Dimitrov K, Gancel F, Vauchel P, Jacques P, Nikov I (2012) Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour Technol 126:1–6. https://doi.org/10.1016/j.biortech.2012.09.019

    Article  PubMed  CAS  Google Scholar 

  136. Nikolov L, Karamanev D, Mamatarkova V, Mehochev D, Dimitrov D (2002) Properties of the biofilm of Thiobacillus ferrooxidans formed in rotating biological contactor. Biochem Eng J 12:43–48. https://doi.org/10.1016/S1369-703X(02)00041-4

    Article  CAS  Google Scholar 

  137. Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47:2020–2024. https://doi.org/10.1016/j.procbio.2012.07.013

    Article  CAS  Google Scholar 

  138. Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2014) Selective fengycin production in a modified rotating discs bioreactor. Bioprocess Biosyst Eng 37:107–114. https://doi.org/10.1007/s00449-013-0964-9

    Article  PubMed  CAS  Google Scholar 

  139. Zune Q, Soyeurt D, Toye D, Ongena M, Thonart P, Delvigne F (2014) High-energy X-ray tomography analysis of a metal packing biofilm reactor for the production of lipopeptides by Bacillus subtilis. J Chem Technol Biotechnol 89:382–390. https://doi.org/10.1002/jctb.4128

    Article  CAS  Google Scholar 

  140. Zune Q, Telek S, Calvo S, Salmon T, Alchihab M, Toye D, Delvigne F (2016) Influence of liquid phase hydrodynamics on biofilm formation on structured packing: optimization of surfactin production from Bacillus amyloliquefaciens. Chem Eng Sci 170:628–638. https://doi.org/10.1016/j.ces.2016.08.023

    Article  CAS  Google Scholar 

  141. Brück HL, Delvigne F, Dhulster P, Jacques P, Coutte F (2019) Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode. Bioresour Technol 293:122090. https://doi.org/10.1016/j.biortech.2019.122090

    Article  PubMed  CAS  Google Scholar 

  142. De Roy K, Clement L, Thas O, Wang Y, Boon N (2012) Flow cytometry for fast microbial community fingerprinting. Water Res 46:907–919. https://doi.org/10.1016/j.watres.2011.11.076

    Article  PubMed  CAS  Google Scholar 

  143. Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9:61–72. https://doi.org/10.1002/biot.201300119

    Article  PubMed  CAS  Google Scholar 

  144. Brück HL, Coutte F, Dhulster P, Gofflot S, Jacques P, Delvigne F (2020) Growth dynamics of bacterial populations in a two-compartment biofilm bioreactor designed for continuous surfactin biosynthesis. Microorganisms 8:679. https://doi.org/10.3390/microorganisms8050679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507. https://doi.org/10.1007/s00253-010-2504-8

    Article  PubMed  CAS  Google Scholar 

  146. Dos Santos LFM, Coutte F, Ravallec R, Dhulster P, Tournier-Couturier L, Jacques P (2016) An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour Technol 218:944–952. https://doi.org/10.1016/j.biortech.2016.07.053

    Article  CAS  Google Scholar 

  147. Coutte F, Lecouturier D, Leclère V, Béchet M, Jacques P, Dhulster P (2013) New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem 48:25–32. https://doi.org/10.1016/j.procbio.2012.10.005

    Article  CAS  Google Scholar 

  148. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494. https://doi.org/10.1016/0006-291X(68)90503-2

    Article  PubMed  CAS  Google Scholar 

  149. Kim H-S, Yoon B-D, Lee C-H, Suh H-H, Oh H-M, Katsuragi T, Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46

    Article  Google Scholar 

  150. Willenbacher J, Zwick M, Mohr T, Schmid F, Syldatk C, Hausmann R (2014) Evaluation of different Bacillus strains in respect of their ability to produce surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol 98:9623–9632. https://doi.org/10.1007/s00253-014-6010-2

    Article  PubMed  CAS  Google Scholar 

  151. Chen HL, Juang RS (2008) Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: significance of membrane adsorption. J Membr Sci 325:599–604. https://doi.org/10.1016/j.memsci.2008.08.017

    Article  CAS  Google Scholar 

  152. Liu T, Montastruc L, Gancel F, Zhao L, Nikov I (2007) Integrated process for production of surfactin. Part 1: adsorption rate of pure surfactin onto activated carbon. Biochem Eng J 35:333–340. https://doi.org/10.1016/j.bej.2007.01.025

    Article  CAS  Google Scholar 

  153. Dhanarajan G, Rangarajan V, Sen R (2015) Dual gradient macroporous resin column chromatography for concurrent separation and purification of three families of marine bacterial lipopeptides from cell free broth. Sep Purif Technol 143:72–79. https://doi.org/10.1016/j.seppur.2015.01.025

    Article  CAS  Google Scholar 

  154. Jauregi P, Coutte F, Catiau L, Lecouturier D, Jacques P (2013) Micelle size characterization of lipopeptides produced by B. subtilis and their recovery by the two-step ultrafiltration process. Sep Purif Technol 104:175–182. https://doi.org/10.1016/j.seppur.2012.11.017

    Article  CAS  Google Scholar 

  155. Sen R, Swaminathan T (2005) Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 40:2953–2958. https://doi.org/10.1016/j.procbio.2005.01.014

    Article  CAS  Google Scholar 

  156. Rangarajan V, Dhanarajan G, Sen R (2014) Improved performance of cross-flow ultrafiltration for the recovery and purification of Ca2+ conditioned lipopeptides in diafiltration mode of operation. J Membr Sci 454:436–443. https://doi.org/10.1016/j.memsci.2013.12.047

    Article  CAS  Google Scholar 

  157. Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bio-active amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253. https://doi.org/10.1016/j.bej.2008.07.005

    Article  CAS  Google Scholar 

  158. Yuan J, Raza W, Huang Q, Shen Q (2012) The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. J Basic Microbiol 52:721–730. https://doi.org/10.1002/jobm.201100560

    Article  PubMed  CAS  Google Scholar 

  159. Chen HL, Chen YS, Juang RS (2007) Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. J Membr Sci 299:114–121. https://doi.org/10.1016/j.memsci.2007.04.031

    Article  CAS  Google Scholar 

  160. Wei Y-H, Wang L-C, Chen W-C, Chen S-Y (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci 11:4526–4538. https://doi.org/10.3390/ijms11114526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Sep Purif Technol 59:244–252. https://doi.org/10.1016/j.seppur.2007.06.010

    Article  CAS  Google Scholar 

  162. Chen HL, Lee YS, Wei YH, Juang RS (2008) Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities. Biochem Eng J 40:452–459. https://doi.org/10.1016/j.bej.2008.01.020

    Article  CAS  Google Scholar 

  163. Carolin CF, Kumar PS, Ngueagni PT (2021) A review on new aspects of lipopeptide biosurfactant: types , production , properties and its application in the bioremediation process. J Hazard Mater 407:124827. https://doi.org/10.1016/j.jhazmat.2020.124827

    Article  CAS  Google Scholar 

  164. Théatre A, Cano-prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P (2021) The surfactin-like lipopeptides from Bacillus spp.: natural biodiversity and synthetic biology for a broader application range. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.623701

  165. Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210. https://doi.org/10.1385/ABAB:90:3:199

    Article  PubMed  CAS  Google Scholar 

  166. Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of beta-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B Biointerfaces 4:341–348

    Article  CAS  Google Scholar 

  167. Thimon L, Peypoux F, Marget-Dana R, Michel G (1992) Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J Am Oil Chem Soc 69:92–93

    Article  CAS  Google Scholar 

  168. Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95. https://doi.org/10.1016/j.bbagen.2005.06.015

    Article  PubMed  CAS  Google Scholar 

  169. Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385

    Article  CAS  Google Scholar 

  170. Razafindralambo H, Thonart P, Paquot M (2004) Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J Surfactant Deterg 7:41–46. https://doi.org/10.1007/s11743-004-0286-x

    Article  CAS  Google Scholar 

  171. De Araujo LLGC, Sodré LGP, Brasil LR, Domingos DF, de Oliveira VM, da Cruz GF (2019) Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota – part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng 180:950–957. https://doi.org/10.1016/j.petrol.2019.06.031

    Article  CAS  Google Scholar 

  172. Razafindralambo H (1996) Contribution à l’étude des propriétés tensioactives de lipopeptides de Bacillus subtilis

    Google Scholar 

  173. Shakerifard P, Gancel F, Jacques P, Faille C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541. https://doi.org/10.1080/08927010902977943

    Article  PubMed  Google Scholar 

  174. Diallo MM, Vural C, Şahar U, Ozdemir G (2019) Kurstakin molecules facilitate diesel oil assimilation by acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes strain 2SA through overexpression of alkane hydroxylase genes. Environ Technol. https://doi.org/10.1080/09593330.2019.1689301

  175. Yakimov M, Fredrickson H, Timmis K (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 23:13–18

    PubMed  CAS  Google Scholar 

  176. Habe H, Taira T, Sato Y, Imura T, Ano T (2019) Evaluation of yield and surface tension-lowering activity of iturin A produced by Bacillus subtilis RB14. J Oleo Sci 68:1157–1162

    Article  PubMed  CAS  Google Scholar 

  177. Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031

    Article  CAS  Google Scholar 

  178. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10. https://doi.org/10.1016/S0927-7757(98)00627-X

    Article  CAS  Google Scholar 

  179. de Araujo LV, Reis Guimaraes C, da Silva Marquita RL, Santiago VM, de Souza MP, Nitschke M, Guimarares Freire DM (2016) Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178. https://doi.org/10.1016/j.foodcont.2015.11.036

    Article  CAS  Google Scholar 

  180. Jemil N, Hmidet N, Ayed HB, Nasri M (2018) Physicochemical characterization of Enterobacter cloacae C3 lipopeptides and their applications in enhancing diesel oil biodegradation. Process Saf Environ Prot 117:399–407. https://doi.org/10.1016/j.psep.2018.05.018

    Article  CAS  Google Scholar 

  181. Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483. https://doi.org/10.1007/s00203-006-0163-z

    Article  PubMed  CAS  Google Scholar 

  182. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  PubMed  CAS  Google Scholar 

  183. Hamley IW, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Chataigné G, Jacques P (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9:9572–9578. https://doi.org/10.1039/c3sm51514a

    Article  PubMed  CAS  Google Scholar 

  184. Grau A, Gomez-Fernandez JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5

    Article  PubMed  CAS  Google Scholar 

  185. Thimon L, Peypoux F, Wallach J, Michel G (1993) Ionophorous biosurfactant and sequestering properties of surfactin, a biosurfactant from Bacillus subtills. Colloids Surf B Biointerfaces 1:57–62

    Article  CAS  Google Scholar 

  186. Habe H, Taira T, Imura T (2018) Surface activity and Ca2+ -dependent aggregation property of lichenysin produced by Bacillus licheniformis NBRC 104464. J Oleo Sci 67:1307–1313

    Article  PubMed  CAS  Google Scholar 

  187. Rautenbach M, Swart P, van der Merwe MJ (2000) The interaction of analogues of the antimicrobial lipopeptide, iturin A2, with alkali metal ions. Bioorg Med Chem 8:2539–2548

    Article  PubMed  CAS  Google Scholar 

  188. Deleu M, Lorent J, Lins L, Brasseur R, Braun N, El Kirat K, Nylander T, Dufrêne YF, Mingeot-Leclercq MP (2013) Effects of surfactin on membrane models displaying lipid phase separation. Biochim Biophys Acta Biomembr 1828:801–815. https://doi.org/10.1016/j.bbamem.2012.11.007

    Article  CAS  Google Scholar 

  189. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679. https://doi.org/10.1529/biophysj.107.114090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, de Fátima Fiore M, Silva-Stenico ME, de Moraes LAB, Teschke O (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190:611–622. https://doi.org/10.1007/s00203-008-0409-z

    Article  PubMed  CAS  Google Scholar 

  191. Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871. https://doi.org/10.1371/journal.pone.0116871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Wu T, Chen M, Zhou L, Lu F, Bie X, Lu Z (2020) Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10462-w

  193. Zakharova AA, Efimova SS, Malev VV, Ostroumova OS (2019) Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci Rep 9. https://doi.org/10.1038/s41598-019-52551-5

  194. Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, De Vicente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact 24:1540–1552. https://doi.org/10.1094/MPMI-06-11-0162

    Article  PubMed  CAS  Google Scholar 

  195. Grau A, Gómez Fernández JC, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta Biomembr 1418:307–319. https://doi.org/10.1016/S0005-2736(99)00039-5

    Article  CAS  Google Scholar 

  196. Tao Y, Bie X, Lv F, Zhao H, Lu Z (2011) Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49:146–150. https://doi.org/10.1007/s12275-011-0171-9

    Article  PubMed  CAS  Google Scholar 

  197. Wise C, Falardeau J, Hagberg I, Avis TJ (2014) Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104:1036–1041. https://doi.org/10.1094/PHYTO-12-13-0336-R

    Article  PubMed  CAS  Google Scholar 

  198. Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8–14. https://doi.org/10.1016/j.foodcont.2013.07.034

    Article  CAS  Google Scholar 

  199. Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83:1075–1092. https://doi.org/10.1128/AEM.01075-17

    Article  Google Scholar 

  200. Hanif A, Zhang F, Li P, Li C, Xu Y, Zubair M, Zhang M, Jia D, Zhao X, Liang J, Majid T, Yan J, Farzand A, Wu H, Gu Q, Gao X (2019) Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins (Basel) 11. https://doi.org/10.3390/toxins11050295

  201. Jin P, Wang H, Tan Z, Xuan Z, Dahar GY, Li QX, Miao W, Liu W (2020) Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides. Penz Pestic Biochem Physiol 163:102–107. https://doi.org/10.1016/j.pestbp.2019.11.004

    Article  PubMed  CAS  Google Scholar 

  202. Liu J, Zhou T, He D, Li X, Wu H, Liu W, Gao X (2011) Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20:43–52. https://doi.org/10.1159/000323501

    Article  PubMed  CAS  Google Scholar 

  203. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540. https://doi.org/10.1016/j.micres.2013.12.001

    Article  PubMed  CAS  Google Scholar 

  204. Zhang L, Sun C (2018) Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.00445-18

  205. Medeot DB, Fernandez M, Morales GM, Jofré E (2020) Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 10:3107. https://doi.org/10.3389/fmicb.2019.03107

    Article  PubMed  PubMed Central  Google Scholar 

  206. Villegas-Escobar V, González-Jaramillo LM, Ramírez M, Moncada RN, Sierra-Zapata L, Orduz S, Romero-Tabarez M (2018) Lipopeptides from Bacillus sp. EA-CB0959: active metabolites responsible for in vitro and in vivo control of Ralstonia solanacearum. Biol Control 125:20–28. https://doi.org/10.1016/j.biocontrol.2018.06.005

    Article  CAS  Google Scholar 

  207. Mihalache G, Balaes T, Gostin I, Stefan M, Coutte F, Krier F (2018) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25:29784–29793. https://doi.org/10.1007/s11356-017-9162-7

    Article  CAS  Google Scholar 

  208. Tanaka K, Amaki Y, Ishihara A, Nakajima H (2015) Synergistic effects of [Ile 7] surfactin homologues with Bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. J Agric Food Chem 63:5344–5353. https://doi.org/10.1021/acs.jafc.5b01198

    Article  PubMed  CAS  Google Scholar 

  209. Wang Y, Zhang C, Liang J, Wang L, Gao W, Jiang J, Chang R (2020) Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl Microbiol Biotechnol 104:7467–7481. https://doi.org/10.1007/s00253-020-10773-y

    Article  PubMed  CAS  Google Scholar 

  210. Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. https://doi.org/10.1021/ac500290s

    Article  PubMed  CAS  Google Scholar 

  211. Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973. https://doi.org/10.3389/fmicb.2017.01973

    Article  PubMed  PubMed Central  Google Scholar 

  212. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x

    Article  PubMed  CAS  Google Scholar 

  213. Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S, Brader G, Sessitsch A, Hafeez FY (2018) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13. https://doi.org/10.1016/j.micres.2018.01.006

    Article  PubMed  CAS  Google Scholar 

  214. Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chun-lan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70. https://doi.org/10.1007/s13199-014-0288-9

    Article  CAS  Google Scholar 

  215. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. https://doi.org/10.1104/pp.103.028712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864. https://doi.org/10.1111/j.1462-2920.2012.02860.x

    Article  PubMed  Google Scholar 

  217. Xiu P, Liu R, Zhang D, Suna C (2017) Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM.00450-17

  218. Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD (2012) Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci U S A 109:13082–13087. https://doi.org/10.1073/pnas.1205586109

    Article  PubMed  PubMed Central  Google Scholar 

  219. Straight PD, Willey JM, Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925. https://doi.org/10.1128/JB.00162-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31:1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003

    Article  PubMed  CAS  Google Scholar 

  221. Fickers P, Guez J-S, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640. https://doi.org/10.1128/AEM.00548-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud J-M, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl Microbiol Biotechnol 99:5083–5093. https://doi.org/10.1007/s00253-014-6317-z

    Article  PubMed  CAS  Google Scholar 

  223. Ruiz A, Pinazo A, Pérez L, Manresa A, Marqués AM (2017) Green catanionic gemini surfactant-lichenysin mixture: improved surface, antimicrobial, and physiological properties. ACS Appl Mater Interfaces 9:22121–22131. https://doi.org/10.1021/acsami.7b03348

    Article  PubMed  CAS  Google Scholar 

  224. Sabaté DC, Audisio MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res 168:125–129. https://doi.org/10.1016/j.micres.2012.11.004

    Article  PubMed  CAS  Google Scholar 

  225. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Liu X, Tao X, Zou A, Yang S, Zhang L, Mu B (2010) Effect of themicrobial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein Cell 1:584–594. https://doi.org/10.1007/s13238-010-0072-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Kikuchi T, Hasumi K (2002) Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo. Biochim Biophys Acta 1596:234–245

    Article  PubMed  CAS  Google Scholar 

  228. Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556:166–171. https://doi.org/10.1016/j.ejphar.2006.10.031

    Article  PubMed  CAS  Google Scholar 

  229. Hwang Y-H, Kim M-S, Song I-B, Park B-K, Lim J-H, Park S-C, Yun H-I (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J Heal Sci 55:351–355

    Article  CAS  Google Scholar 

  230. Zhao H, Li J, Zhang Y, Lei S, Zhao X, Shao D, Jiang C, Shi J, Sun H (2018) Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food Funct 9:5580–5587. https://doi.org/10.1039/c8fo01523f

    Article  PubMed  CAS  Google Scholar 

  231. Dey G, Bharti R, Banerjee I, Das K (2016) Pre-clinical risk assessment and therapeutic potential of antitumor lipopeptide ‘Iturin A’ in an in vivo and in vitro model. RSC Adv:71612–71623. https://doi.org/10.1039/c6ra13476a

  232. Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  233. Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15:913–921. https://doi.org/10.1093/protein/15.11.913

    Article  PubMed  CAS  Google Scholar 

  234. Quentin MJ, Besson F, Peypoux F, Michel G (1982) Action of peptidolipidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on hemolysis. Biochim Biophys Acta 684:207–211. https://doi.org/10.1016/0005-2736(82)90007-4

    Article  PubMed  CAS  Google Scholar 

  235. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56. https://doi.org/10.1016/j.bbamem.2005.05.003

    Article  CAS  Google Scholar 

  236. Huang X, Lu Z, Zhao H, Bie X, Lu F, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus , porcine parvovirus , newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377. https://doi.org/10.1007/s10989-006-9041-4

    Article  CAS  Google Scholar 

  237. Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, Ding Z, Luo X, Bente D, Bradrick SS, Freiberg AN, Popov V, Rajsbaum R, Rossi S, Russell WK, Menachery VD (2019) Peptidoglycan-associated cyclic lipopeptide disrupts viral infectivity. J Virol 93:1–15

    Article  Google Scholar 

  238. Kracht M, Rokos H, Özel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 52:613–619. https://doi.org/10.7164/antibiotics.52.613

    Article  PubMed  CAS  Google Scholar 

  239. Vollenbroich D, Muhsin O, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  PubMed  CAS  Google Scholar 

  240. Wang X, Hu W, Zhu L, Yang Q (2017) Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep 37:1–10. https://doi.org/10.1042/BSR20170082

    Article  CAS  Google Scholar 

  241. Yuan L, Zhang S, Peng J, Li Y, Yang Q (2019) Synthetic surfactin analogues have improved anti-PEDV properties. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0215227

    Article  CAS  Google Scholar 

  242. Yuan L, Zhang S, Wang Y, Li Y, Wang X, Yang Q (2018) Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J Virol 92:1–19. https://doi.org/10.1128/jvi.00809-18

    Article  CAS  Google Scholar 

  243. Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871. https://doi.org/10.1016/j.febslet.2007.01.059

    Article  PubMed  CAS  Google Scholar 

  244. Park SY, Kim J-H, Lee YJ, Lee SJ, Kim Y (2012) Surfactin suppresses TPA-induced breast cancer cell invasion through the inhibition of MMP-9 expression. Int J Oncol 42:287–296. https://doi.org/10.3892/ijo.2012.1695

    Article  PubMed  CAS  Google Scholar 

  245. Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, Yan L, Zeng B (2009) Surfactin induces apoptosis and G2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55:163–171. https://doi.org/10.1007/s12013-009-9065-4

    Article  PubMed  CAS  Google Scholar 

  246. Cao X, Wang A, Wang C, Mao D, Lu M, Cui Y, Jiao R (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362. https://doi.org/10.1016/j.cbi.2009.11.027

    Article  PubMed  CAS  Google Scholar 

  247. Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, Lu Z (2013) Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs 24:587–598. https://doi.org/10.1097/CAD.0b013e3283611395

    Article  PubMed  CAS  Google Scholar 

  248. Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho KM (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131:1347–1354. https://doi.org/10.1016/j.foodchem.2011.09.133

    Article  CAS  Google Scholar 

  249. Dey G, Bharti R, Dhanarajan G, Das S, Dey KK, Kumar BNP, Sen R, Mandal M (2015) Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 5:1–14. https://doi.org/10.1038/srep10316

    Article  CAS  Google Scholar 

  250. Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar A, Mandal M, Sen R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222. https://doi.org/10.1007/s10989-010-9212-1

    Article  CAS  Google Scholar 

  251. Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222. https://doi.org/10.4149/206

    Article  PubMed  CAS  Google Scholar 

  252. Wang CL, Ng TB, Yuan F, Liu ZK, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344–1350. https://doi.org/10.1016/j.peptides.2007.06.014

    Article  PubMed  CAS  Google Scholar 

  253. Kameda Y, Kanatomo S (1968) Abstracts papers, The 88th annual meeting of pharmaceutical society of Japan

    Google Scholar 

  254. Zhao H, Shao D, Jiang C, Shi J, Li Q (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  PubMed  CAS  Google Scholar 

  255. Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975–985

    Article  PubMed  CAS  Google Scholar 

  256. Hwang MH, Lim JH, Yun HI, Rhee MH, Cho JY, Hsu WH, Park SC (2005) Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1β and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 27:1605–1608. https://doi.org/10.1007/s10529-005-2515-1

    Article  PubMed  CAS  Google Scholar 

  257. Kim Dae S, Cho JY, Park HJ, Im CR, Lim JH, Yun HI, Park SC, Kim SK, Rhee MH (2006) A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. J Microbiol Biotechnol 16:1656–1659

    Google Scholar 

  258. Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, Igarashi M, Umezawa K (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot (Tokyo) 59:35–43. https://doi.org/10.1038/ja.2006.6

    Article  PubMed  CAS  Google Scholar 

  259. Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C (2015) Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38:756–764. https://doi.org/10.1007/s10753-014-9986-y

    Article  PubMed  CAS  Google Scholar 

  260. Park SY, Kim J-H, Lee SJ, Kim Y (2013) Surfactin exhibits neuroprotective effects by inhibiting amyloid β-mediated microglial activation. Neurotoxicology 38:115–123. https://doi.org/10.1016/j.neuro.2013.07.004

    Article  PubMed  CAS  Google Scholar 

  261. Park SY, Kim YH (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893. https://doi.org/10.1016/j.intimp.2009.03.013

    Article  PubMed  CAS  Google Scholar 

  262. Xu W, Liu H, Wang X, Yang Q (2016) Surfactin induces maturation of dendritic cells in vitro. Biosci Rep 36:1–7. https://doi.org/10.1042/BSR20160204

    Article  CAS  Google Scholar 

  263. Gao Z, Wang S, Qi G, Pan H, Zhang L, Zhou X, Liu J, Zhao X, Wu J (2012) A surfactin cyclopeptide of WH1fungin used as a novel adjuvant for intramuscular and subcutaneous immunization in mice. Peptides 38:163–171. https://doi.org/10.1016/j.peptides.2012.08.021

    Article  PubMed  CAS  Google Scholar 

  264. Pan H, Zhao X, Gao Z, Qi G (2014) A surfactin lipopeptide adjuvanted hepatitis B vaccines elicit enhanced humoral and cellular immune responses in mice. Protein Pept Lett 21:901–910

    Article  PubMed  CAS  Google Scholar 

  265. Gao Z, Zhao X, Yang T, Shang J, Shang L, Mai H, Qi G (2014) Immunomodulation therapy of diabetes by oral administration of a surfactin lipopeptide in NOD mice. Vaccine 32:6812–6819. https://doi.org/10.1016/j.vaccine.2014.08.082

    Article  PubMed  CAS  Google Scholar 

  266. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17:119–128. https://doi.org/10.1016/j.bcab.2018.11.009

    Article  Google Scholar 

  267. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  PubMed  CAS  Google Scholar 

  268. Rashid MH-O, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01816

    Article  Google Scholar 

  269. Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8:521–539. https://doi.org/10.1016/j.molp.2014.12.022

    Article  PubMed  CAS  Google Scholar 

  270. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724. https://doi.org/10.1094/MPMI-19-0711

    Article  PubMed  CAS  Google Scholar 

  271. Henry G, Deleu M, Jourdan E, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13:1824–1837. https://doi.org/10.1111/j.1462-5822.2011.01664.x

    Article  PubMed  CAS  Google Scholar 

  272. Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468. https://doi.org/10.1094/MPMI-22-4-0456

    Article  PubMed  CAS  Google Scholar 

  273. Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact 27:87–100. https://doi.org/10.1094/MPMI-09-13-0262-R

    Article  PubMed  CAS  Google Scholar 

  274. Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28:984–995. https://doi.org/10.1094/mpmi-03-15-0066-r

    Article  PubMed  CAS  Google Scholar 

  275. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. J Microbial Biotechnol 6:264–274. https://doi.org/10.1111/1751-7915.12028

    Article  CAS  Google Scholar 

  276. Le Mire G, Siah A, Brisset MN, Gaucher M, Deleu M, Jijakli MH (2018) Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses. Agriculture 8. https://doi.org/10.3390/agriculture8010011

  277. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J-L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    Article  PubMed  CAS  Google Scholar 

  278. Rodríguez J, Tonelli ML, Figueredo MS, Ibáñez F, Fabra A (2018) The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur J Plant Pathol 152:845–851. https://doi.org/10.1007/s10658-018-1524-6

    Article  CAS  Google Scholar 

  279. Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187. https://doi.org/10.1111/mpp.12170

    Article  PubMed  CAS  Google Scholar 

  280. Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188. https://doi.org/10.1111/1462-2920.12538

    Article  PubMed  CAS  Google Scholar 

  281. Mejri S, Siah A, Coutte F, Magnin-Robert M, Randoux B, Tisserant B, Krier F, Jacques P, Reignault P, Halama P (2018) Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ Sci Pollut Res 25:29822–29833. https://doi.org/10.1007/s11356-017-9241-9

    Article  CAS  Google Scholar 

  282. Park K, Park Y-S, Ahamed J, Dutta S, Ryu H, Lee S-H, Balaraju K, Manir M, Moon S-S (2016) Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived from Bacillus vallismortis EXTN-1. Can J Plant Sci 96:564–570. https://doi.org/10.1139/cjps-2015-0199

    Article  CAS  Google Scholar 

  283. Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386. https://doi.org/10.1111/lam.12382

    Article  PubMed  CAS  Google Scholar 

  284. Farzand A, Moosa A, Zubair M, Khan AR, Massawe VC, Tahir HAS, Sheikh TMM, Ayaz M, Gao X (2019) Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules 9. https://doi.org/10.3390/biom9100613

  285. Li Y, Héloir MC, Zhang X, Geissler M, Trouvelot S, Jacquens L, Henkel M, Su X, Fang X, Wang Q, Adrian M (2019) Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol Plant Pathol 20:1037–1050. https://doi.org/10.1111/mpp.12809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52:357–369. https://doi.org/10.1111/j.1365-2958.2004.03996.x

    Article  PubMed  CAS  Google Scholar 

  287. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  PubMed  CAS  Google Scholar 

  288. Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? J Microbial Biotechnol 10:719–734. https://doi.org/10.1111/1751-7915.12693

    Article  Google Scholar 

  289. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro2960

  290. Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, García-Martín ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A, Loquet A, Dorrestein PC, Romero D (2019) The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun 10:1919. https://doi.org/10.1038/s41467-019-09944-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Pandin C, Darsonval M, Mayeur C, Le Coq D, Aymerich S, Briandet R (2019) Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Appl Environ Microbiol 85:1–13. https://doi.org/10.1128/AEM.00327-19

    Article  Google Scholar 

  292. Pisithkul T, Schroeder JW, Trujillo EA, Yeesin P, Stevenson DM, Chaiamarit T, Coon JJ, Wang JD, Amador-Noguez D (2019) Metabolic remodeling during biofilm development of Bacillus subtilis. MBio 10:1–32. https://doi.org/10.1128/mBio.00623-19

    Article  Google Scholar 

  293. Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151:303–311. https://doi.org/10.1016/j.jbiotec.2010.12.022

    Article  PubMed  CAS  Google Scholar 

  294. Thérien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G, Kovács ÁT, Beauregard PB (2020) Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2:100021. https://doi.org/10.1016/j.bioflm.2020.100021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro2405

  296. Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on waves of surfactant. Proc Natl Acad Sci U S A 106:18109–18113. https://doi.org/10.1073/pnas.0905890106

    Article  PubMed  PubMed Central  Google Scholar 

  297. Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: Critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76. https://doi.org/10.1128/JB.187.1.65-76.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590. https://doi.org/10.1046/j.1365-2958.2003.03584.x

    Article  PubMed  CAS  Google Scholar 

  299. Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631. https://doi.org/10.1128/JB.185.18.5627-5631.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-22782-z

    Article  CAS  Google Scholar 

  301. Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S (2012) Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol 78:6540–6544. https://doi.org/10.1128/AEM.01341-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Dixit S, Rutuja D, Prasad E (2020) Surfactants market by type (anionic, non-ionic, cationic, amphoteric, and others) and application (household detergents, personal care, industrial & institutional cleaners, food processing, oilfield chemicals, agricultural chemicals, textiles, Emulsion Po Portland

    Google Scholar 

  303. Santos VSV, Silveira E, Pereira BB (2019) Toxicity and applications of surfactin for health and environmental biotechnology. J Toxicol Environ Heal Part B Crit Rev 21:382–399. https://doi.org/10.1080/10937404.2018.1564712

    Article  CAS  Google Scholar 

  304. Gao S, Wu H, Yu X, Qian L, Gao X (2016) Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control 98:11–17. https://doi.org/10.1016/j.biocontrol.2016.03.011

    Article  CAS  Google Scholar 

  305. Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. https://doi.org/10.1111/j.1365-2958.2004.04036.x

    Article  PubMed  CAS  Google Scholar 

  306. Asaka O, Shoda M (1996) Biocontrol of Rizhoctonia solani Damping-off of Tomato with Bacillus sutlis RB14. Appl Environ Microbiol 62:4081–4085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  307. Chandler S, Van Hese N, Coutte F, Jacques P, Höfte M, De Vleesschauwer D (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30. https://doi.org/10.1016/j.pmpp.2015.05.010

    Article  CAS  Google Scholar 

  308. Deravel J, Lemière S, Coutte F, Krier F, Van Hese N, Béchet M, Sourdeau N, Höfte M, Leprêtre A, Jacques P (2014) Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl Microbiol Biotechnol 98:6255–6264. https://doi.org/10.1007/s00253-014-5663-1

    Article  PubMed  CAS  Google Scholar 

  309. Zouari R, Besbes S, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Cookies from composite wheat-sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chem 194:758–769. https://doi.org/10.1016/j.foodchem.2015.08.064

    Article  PubMed  CAS  Google Scholar 

  310. Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agric 93:3055–3064. https://doi.org/10.1002/jsfa.6139

    Article  PubMed  CAS  Google Scholar 

  311. Huang X, Suo J, Cui Y (2011) Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis 8:439–443. https://doi.org/10.1089/fpd.2010.0738

    Article  PubMed  CAS  Google Scholar 

  312. Joe MM, Bradeeba K, Parthasarathi R, Sivakumaar PK, Chauhan PS, Tipayno S, Benson A, Sa T (2012) Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem Eng 43:172–180. https://doi.org/10.1016/j.jtice.2011.08.008

    Article  CAS  Google Scholar 

  313. Alvarez VM, Guimarães CR, Jurelevicius D, de Castilho LVA, de Sousa JS, da Mota FF, Freire DMG, Seldin L (2020) Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0. Fuel 272:117730. https://doi.org/10.1016/j.fuel.2020.117730

    Article  CAS  Google Scholar 

  314. Long X, He N, He Y, Jiang J, Wu T (2017) Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 241:200–206. https://doi.org/10.1016/j.biortech.2017.05.120

    Article  PubMed  CAS  Google Scholar 

  315. Schaller KD, Fox SL, Bruhn DF, Noah KS, Bala GA (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 115:827–836. https://doi.org/10.1007/978-1-59259-837-3_67

    Article  Google Scholar 

  316. Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614. https://doi.org/10.1016/j.jhazmat.2009.01.017

    Article  PubMed  CAS  Google Scholar 

  317. Whang LM, Liu PWG, Ma CC, Cheng SS (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation-effects of pH and ammonium addition. J Hazard Mater 164:1045–1050. https://doi.org/10.1016/j.jhazmat.2008.09.006

    Article  PubMed  CAS  Google Scholar 

  318. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125. https://doi.org/10.1016/S0304-3894(01)00224-2

    Article  PubMed  CAS  Google Scholar 

  319. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198. https://doi.org/10.1016/j.envpol.2004.06.009

    Article  PubMed  CAS  Google Scholar 

  320. Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Chen M-C, Liu T-T, Wang J-P, Chen Y-P, Chen Q-X, Zhu Y-J, Liu B (2020) Strong inhibitory activities and action modes of lipopeptides on lipase. J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2020.1734798

  322. Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH (2017) Anticancer activities of surfactin potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761. https://doi.org/10.3389/fphar.2017.00761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. do Valle Gomes MZ, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447. https://doi.org/10.1016/j.foodcont.2011.11.025

    Article  CAS  Google Scholar 

  324. Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183: 5848–5854. https://doi.org/10.1128/JB.183.20.5848-5854.2001

  325. Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335. https://doi.org/10.1111/j.1472-765X.2007.02197.x

    Article  PubMed  CAS  Google Scholar 

  326. Taira T, Yanagisawa S, Nagano T, Tsuji T, Endo A, Imura T (2017) pH-induced conformational change of natural cyclic lipopeptide surfactin and the effect on protease activity. Colloids Surf B Biointerfaces 156:382–387. https://doi.org/10.1016/j.colsurfb.2017.05.017

    Article  PubMed  CAS  Google Scholar 

  327. Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8. https://doi.org/10.1111/j.1468-2494.2009.00543.x

    Article  PubMed  CAS  Google Scholar 

  328. Lewińska A, Domżał-Kędzia M, Jaromin A, Łukaszewicz M (2020) Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics 12:1–21. https://doi.org/10.3390/pharmaceutics12100953

    Article  CAS  Google Scholar 

  329. Yan L, Liu G, Zhao B, Pang B, Wu W, Ai C, Zhao X, Wang X, Jiang C, Shao D, Liu Q, Li M, Wang L, Shi J (2020) Novel biomedical functions of surfactin A from Bacillus subtilis in wound healing promotion and scar inhibition. J Agric Food Chem 68:6987–6997. https://doi.org/10.1021/acs.jafc.0c01658

    Article  PubMed  CAS  Google Scholar 

  330. Lu J-K,Wang H-M, Xu X-R (2016) Method for anti-aging treatment by surfactin in cosmetics via enhancing sirtuin (U.S. Patent No. US 9,364,413 B2) U. S. Patent and Trademark Office

    Google Scholar 

  331. Yoneda T, Masatsuji E, Tsuzuki T, Furuya K, Takama M, Miyota Y, Ito S (1999) Surfactant for use in external preparations for skin and external preparation for skin containing the same (No. WO 99/62482) World Intellectual Property Organization

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ERACoBioTech program (BestBioSurf project), the European INTERREG Va SmartBioControl project, and the FNRS SURFACOVID project. MD and MO thank the FRS-FNRS for their positions as senior research associates.

Conflict of Interest

PJ is a co-founder of Lipofabrik and Lipofabrik Belgium and a member of the scientific advisory board of both companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jacques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Théatre, A. et al. (2021). Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. In: Hausmann, R., Henkel, M. (eds) Biosurfactants for the Biobased Economy. Advances in Biochemical Engineering/Biotechnology, vol 181. Springer, Cham. https://doi.org/10.1007/10_2021_182

Download citation

Publish with us

Policies and ethics