Skip to main content
Log in

Marine Bacterium Derived Lipopeptides: Characterization and Cytotoxic Activity Against Cancer Cell Lines

  • Original Paper
  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

A marine Bacillus circulans DMS-2 was able to grow and produce biosurfactant on glucose mineral salts medium (GMSM) with a reduction in the surface tension up to 27 mN m−1. The microorganism produced 1.64 ± 0.1 g l−1 of crude biosurfactant. The lipopeptide nature of the produced biosurfactant was confirmed by primulin and ninhydrin assays using High Performance Thin Layer Chromatography (HPTLC). Preparative thin layer chromatography (TLC) was performed to purify the lipopeptides from the crude biosurfactant. The critical micelle concentrations (CMC) of the crude and purified products were found to be 90 and 40 mg l−1 respectively. Fourier transform infrared spectrophotometer (FTIR) and matrix assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectral analysis revealed the identity of the produced lipopeptides as surfactin (m/z 1,023 Da) and fengycin (m/z 1,495 Da) isoforms. The purified marine lipopeptides displayed a significant antiproliferative activity against the human colon cancer cell lines HCT-15 (IC50 80 μg ml−1) and HT-29 (IC50 120 μg ml−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactant as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by B. subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489

    Article  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sivapathasekaran C, Sen R (2010) Marine lipopeptide biosurfactants: potentials & prospects. In: Sen R (ed) Biosurfactants. Landes Biosciences and Springer Science + Business Media LLC, USA, pp 88–100

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  Google Scholar 

  • Kim SY, Kim JY, Kim S-H, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CH, Hong S (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871

    Article  CAS  PubMed  Google Scholar 

  • Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact of cells. Rapid Commun Mass Spectrom 13:943–949

    Article  CAS  Google Scholar 

  • Li YM, Haddad NIA, Yang SZ, Mu BZ (2008) Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Int J Pept Res Ther 14:229–235

    Article  CAS  Google Scholar 

  • Morran S, Robertson K, Paradisi F, Rai DK, Murphy CD (2009) Production of lipopeptides in Bacillus sp. CS93 isolated from pozol. FEMS Microbiol Lett. doi 10.1111/j.1574-6968.2009.01882.x

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Das P, Sivapathasekaran C, Sen R (2008) Enhanced production of biosurfactant by a marine bacterium on statistical screening of nutritional parameter. Biochem Eng J 42:245–260

    Article  Google Scholar 

  • Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Labbe H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G (1994) [Ala4] Surfactin, a novel isoforms from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96

    Article  CAS  PubMed  Google Scholar 

  • Pueyo MT, Bloch C Jr, Ribeiro AMC, Pd Mascio (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microb Ecol 57:367–378

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeria J, Oliveira R (2006) Biosurfactant: potential application in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Sen R (2008) Biotechnology in enhanced petroleum recovery: the MEOR. Prog Energy Combust Sci 34:714–724

    Article  CAS  Google Scholar 

  • Sen R (2010) Surfactin: biosynthesis, genetics and potential applications. In: Sen R (ed) Biosurfactants. Landes Biosciences and Springer Science + Business Media LLC, USA, pp 315–319

    Google Scholar 

  • Sen R, Swaminathan T (2005) Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 40:2953–2958

    Article  CAS  Google Scholar 

  • Sivapathasekaran C, Mukherjee S, Samanta R, Sen R (2009) High performance liquid chromatography purification of biosurfactant isoforms produced by a marine bacterium. Anal Bioanal Chem 395:845–854

    Article  CAS  PubMed  Google Scholar 

  • Sivapathasekaran C, Mukherjee S, Ray A, Gupta A, Sen R (2010) Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour Technol 101:2884–2887

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang F (2006) Isolation and characterization of a co-producer of fengycins and surfactin, entophytic Bacillus amyloliquefaciens ES-2, from Scutelleria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  • Thanomsub B, Pumeechockchai W, Limtrakul A, Arunrattiyakorn P, Petcheelaha W, Nitoda T, Knazaki H (2007) Chemical structures and biological activities of rhamnolipid produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresour Technol 98:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization—time of flight mass spectrometry of lipopeptide biosurfactant in whole cells and culture filtrates of B. subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Ng TB, Yuan F, Liu ZK, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344–1350

    Article  PubMed  Google Scholar 

  • White T, Bursten S, Federighi D, Lewis RA, Nudelman E (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 25:109–117

    Article  Google Scholar 

Download references

Acknowledgments

CS, PD and JS acknowledge IIT Kharagpur for the Institute fellowship. SM acknowledges CSIR, New Delhi for his fellowship. Authors acknowledge Central Research Facility (CRF), IIT Kharagpur. CS also acknowledges Dr. Soumen Das, SMST, IIT Kharagpur and Mr. Debasish Gayen, Technical staff, Department of Biotechnology, IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkrishna Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivapathasekaran, C., Das, P., Mukherjee, S. et al. Marine Bacterium Derived Lipopeptides: Characterization and Cytotoxic Activity Against Cancer Cell Lines. Int J Pept Res Ther 16, 215–222 (2010). https://doi.org/10.1007/s10989-010-9212-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-010-9212-1

Keywords

Navigation