Skip to main content

Advertisement

Log in

An overview on PET waste recycling for application in packaging

  • Review Article
  • Published:
International Journal of Plastics Technology

Abstract

The most important thermoplastic is one of the polyethylene terephthalate (PET) individuals from the polyester group. Owing to its excellent physical and chemical properties, it has enormous applications in food and beverage packaging. One of the most effective ways to reduce the quantity of PET wastes is the route of recycling the wastes. Incessant hard work of researchers across the world has acquired incredible upgrades in the techniques involved in PET recycling. This paper reviews (a) the most viable methods that have emerged over the years for concoction reusing of PET with extraordinary accentuation on glycolytic depolymerization of PET with ethylene glycol; (b) the different process and late improvements towards expanding the monomer yield; and (d) effect of new innovations, for example, nanotechnology, on future improvements of compound reusing of PET and utilization of recycled PET in the packaging sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130

    Article  CAS  Google Scholar 

  2. Workneh TS, Osthoff G (2010) A review on integrated agro-technology of vegetables. Afr J Biotechnol 9:9307–9327

    Google Scholar 

  3. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  4. Harris J (2001) A survey of sustainable development: social and economic dimensions. vol 6. Island Press

    Google Scholar 

  5. Arvanitoyannis IS (1999) Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J Macromol Sci C: Polym Rev 39:205–271

    Article  Google Scholar 

  6. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277

    Article  CAS  Google Scholar 

  7. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9502

    Article  CAS  Google Scholar 

  8. Devlieghere F, Vermeiren L, Debevere J (2004) Review on new preservation technologies: possibilities and limitations. Int Dairy J 14:273–285

    Article  Google Scholar 

  9. Nikles DE, Farahat MS (2005) New motivation for the depolymerization products derived from poly(ethyleneterephthalate) (PET) waste: a review. Macromol Mater Eng 290:13–30

    Article  CAS  Google Scholar 

  10. Subramanian PM (2000) Plastics recycling and waste management in the US. Resour Conserv Recycl 28:253–263

    Article  Google Scholar 

  11. Emerya A, Davies A, Griffiths A, Williams K (2007) Environmental and economic modelling: a case study of municipal solid waste management scenarios in Wales. Resour Conserv Recycl 49:244–263

    Article  Google Scholar 

  12. Shekdar AV (2009) Sustainable solid waste management: an integrated approach for Asian countries. Waste Manag 29:1438–1448

    Article  CAS  Google Scholar 

  13. Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol 42:1509–1630

    Article  CAS  Google Scholar 

  14. Thanh NP, Matsui Y, Fujiwara T (2010) Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. J Environ Manag 91:2307–2321

    Article  CAS  Google Scholar 

  15. Hockett D, Lober DJ, Pilgrim K (1995) Determinants of per capita municipal solid waste generation in the southeastern United States. J Environ Manag 45:205–217

    Article  Google Scholar 

  16. Tian H, Gao J, Hao J, Lu L, Zhu C, Qiu P (2013) Atmospheric pollution problems and control proposals associated with solid waste management in China: a review. J Hazard Mater 252–253:142–154

    Article  CAS  Google Scholar 

  17. Abdulkarim A, Abiodun AO (2012) A study of problems associated with pet bottles generation and disposal in Kano Metropolis. Acad Res Int 3:56–65

    Google Scholar 

  18. Spaseska D, Civkaroska M (2010) Alkaline hydrolysis of poly(ethylene terephthalate) recycled from the postconsumer soft-drink bottles. J Univ Chem Technol Metall 45:379–384

    CAS  Google Scholar 

  19. Achilias DS, Karayannidis GP (2004) The chemical recycling of pet in the framework of sustainable development. Water Air Soil Pollut 4:385–396

    Article  CAS  Google Scholar 

  20. Paszun D, Spychaj T (1997) Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res 36:1373–1383

    Article  CAS  Google Scholar 

  21. Bach C, Dauchy X, Chagnon M-C, Etienne S (2012) Chemical migration in drinking water stored in polyethylene terephthalate (PET) bottles: a source of controversy. Water Res 46:571–583

    Article  CAS  Google Scholar 

  22. Dodbiba G, Fujita T (2004) Progress in separating plastic materials for recycling. Phys Sep Sci Eng 13:165–182

    Article  CAS  Google Scholar 

  23. Kulkarni NG, Avadhani CV, Sivaram S (2004) Efficient method for recycling poly(ethylene terephthalate) to poly(butylene terephthalate) using transesterification reaction. J Appl Polym Sci 91:3720–3729

    Article  CAS  Google Scholar 

  24. Guclu G, Orbay M (2009) Alkyd resins synthesized from postconsumer PET bottles. Prog Org Coat 65:362–365

    Article  CAS  Google Scholar 

  25. Sinha V, Patel MR, Patel JV (2010) Pet waste management by chemical recycling: a review. J Polym Environ 18:8–25

    Article  CAS  Google Scholar 

  26. Balakrishnan H, Hassa A, Imran M, Wahit MU (2012) Toughening of polylactic acid nanocomposites: a short review. Polym-Plast Technol Eng 51:175–192

    Article  CAS  Google Scholar 

  27. Bekunleoke O (2010) Socioeconomic and environmental sustainability through recycling of chemical wastes. Res J Appl Sci 5:13–19

    Article  Google Scholar 

  28. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochimica Acta 523:1–24

    Article  CAS  Google Scholar 

  29. Vitkauskien I, Makuška R (2008) Glycolysis of industrial poly(ethylene terephthalate) waste directed to bis(hydroxyethylene) terephthalate and aromatic polyester polyols. Chemija 19:29–34

    Google Scholar 

  30. Kofoworola OF, Gheewala SH (2009) Estimation of construction waste generation and management in Thailand. Waste Manag 29:731–738

    Article  Google Scholar 

  31. Martin JH, Collins AR, Diener RG (1985) A sampling protocol for composting, recycling, and re-use of municipal solid waste. Air Waste Manag Assoc 45:864–870

    Article  Google Scholar 

  32. Alhumoud JM (2005) Municipal solid waste recycling in the Gulf co-operation council states. Resour Conserv Recycl 45:142–158

    Article  Google Scholar 

  33. Baeyens J, Brems A, Dewil R (2010) Recovery and recycling of post-consumer waste materials. Part 2. Target wastes (glass beverage bottles, plastics, scrap metal and steel cans, end-of-life tyres, batteries and household hazardous waste). Int J Sustain Eng 3:232–245

    Article  Google Scholar 

  34. Smith DN, Harrison LM, Simmons AJ (1999) A survey of schemes in the United Kingdom collecting plastic bottles for recycling. Resour Conserv Recycl 25:17–34

    Article  Google Scholar 

  35. Sousa I, Wallace D (2006) Product classification to support approximate life-cycle assessment of design concepts. Technol Forecast Soc Chang 73:228–249

    Article  Google Scholar 

  36. Nichols CS, Tony W, Charlotte CM (1999) Food quality polyester recycling. US Patent 5,876,644

  37. Nichols CS, Tony W, Charlotte CM (2001) Food quality polyester recycling. European Patent 108,417,1B1

  38. Jankauskait V, Macijauskas G, Lygaitis R (2008) Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci 14:119–127

    Google Scholar 

  39. Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129

    Article  CAS  Google Scholar 

  40. Vaidya UR, Nadkarni VM (1987) Unsaturated polyester resins from poly(ethy1ene terephthalate) waste. 1. Synthesis and characterization. Ind Eng Chem Res 26:194–198

    Article  CAS  Google Scholar 

  41. Samant KD, Ng KM (1999) Synthesis of prepolymerization stage in polycondensation processes. AIChE J 45:1808–1829

    Article  CAS  Google Scholar 

  42. Goto M, Genta M, Iwaya T, Hirose T (2003) Depolymerization scheme of polyethylene terephthalate in supercritical methanol. In: Proceedings of the 6th international symposium on supercritical fluids, TOME vol 2, pp 1387–1392

  43. Scheirs J (1998) Polymer recycling: science, technology and application. Wiley, New York

    Google Scholar 

  44. Bayer FL (1997) The threshold of regulation and its application to indirect food additive contaminants in recycled plastics. Food Addit Contam 14:661–670

    Article  CAS  Google Scholar 

  45. Duchin F, Lange G-M (1998) Prospects for the recycling of plastics in the United States. Struct Change Econ Dyn 9:307–331

    Article  Google Scholar 

  46. Horn HW, Jones GO, Wei DS, Fukushima K, Lecuyer JM, Coady DJ, Hedrick JL, Rice JE (2012) Mechanisms of organocatalyticamidation and transesterification of aromatic esters as a model for the depolymerization of poly(ethylene) terephthalate. J Phys Chem A 116:12389–12398

    Article  CAS  Google Scholar 

  47. Xiaojun Z, Xiaojun G, Peng C, Lu N, Jingyi Y, Xinru X (2012) Simulation and analysis of an ethylene slurry polymerization system using supercritical propane. Ind Eng Chem Res 51:682–690

    Article  CAS  Google Scholar 

  48. Suresh AK, Sharma MM, Sridhar T (2000) Engineering aspects of industrial liquid phase air oxidation of hydrocarbons. Ind Eng Chem Res 39:3958–3997

    Article  CAS  Google Scholar 

  49. Lima L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  50. Lu S-Y, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  51. Lin SW, Cheng YY (2009) Miscibility, mechanical and thermal properties of melt-mixed poly(trimethylene terephthalate)/polypropylene blends. Polym-Plast Technol Eng 48:827–833

    Article  CAS  Google Scholar 

  52. Awaja F, Pavel D (2005) Recycling PET. Eur Polym J 41:1453–1477

    Article  CAS  Google Scholar 

  53. Thompson R, Swan S, Moore C, von Saal F (2009) Our plastic age. Philos Trans R Soc B 364:1973–1976

    Article  Google Scholar 

  54. Bach C, Dauchy X, Chagnon MC, Etienne S (2012) Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: a source of controversy reviewed. Water Res 46(3):571–583

    Article  CAS  Google Scholar 

  55. Scheirs J, Kaminsky W (2006) Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Wiley, West Sussex

    Book  Google Scholar 

  56. Carraher C (2000) Polymer chemistry. Marcel Dekker, New York

    Google Scholar 

  57. ILSI Europe Report Series (2000) Packaging materials: 1. Polyethylene terephthalate (PET) for food packaging applications. ISLI Press, Brussels

    Google Scholar 

  58. Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recycl 55(11):865–875

    Article  Google Scholar 

  59. Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3- propanediol. J Polym Environ 13:159–167

    Article  CAS  Google Scholar 

  60. Sanches NB, Dias ML, Pacheco EBAV (2005) “Comparative techniques for molecular weight evaluation of poly (ethylene terephthalate) (PET). Polym Testing 24:688–693

    Article  CAS  Google Scholar 

  61. Karayannidis GP, Archilias DS (2007) Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng 292:128–146

    Article  CAS  Google Scholar 

  62. Paszun D, Spychaj T (1995) Recycling of poly(etylene terephthalate) to obtain solid crosslinking agents. In: Proceedings of the national conference on polymers environment recycling, pp 221–226

  63. Nir M, Miltz J, Ram J (1993) Update on plastics and the environment: progress and trends. Plast Eng 49:75–93

    Google Scholar 

  64. Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28:1835–1852

    Article  CAS  Google Scholar 

  65. The Concept of Reduce Reuse and Recycle, by Peter on March 25, 2013

  66. The 3R Concept and Waste Minimization, Hari Srinivas, Concept Note Series E093. June 2015

  67. Jacob NJ (2013) A feasibility study on recycling of plastics wastes into useful energy and its management system in the Gambia. Curr Res Microbiol Biotechnol 1:29–45

    Google Scholar 

  68. Karayannidis G (2006) Chemical recycling of PET by glocolysis: polymerization and characterization of the dimethacrylatedglycolysate. Macromol Mater Eng 291:1338–1347

    Article  CAS  Google Scholar 

  69. Demadis KD, Mavredaki E, Somara M (2011) Additive-driven dissolution enhancement of colloidal silica: 1. Basic principles and relevance to water treatment. Ind Eng Chem Res 50:12587–12595

    Article  CAS  Google Scholar 

  70. Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2015) Greener routes for recycling of polyethylene terephthalate. Egypt J Petrol 25(1):53–64

    Article  Google Scholar 

  71. http://infohouse.p2ric.org/ref/13/12473.pdf

  72. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B 364:2115–2126

    Article  CAS  Google Scholar 

  73. Al-Salem S (2009) Establishing an integrated databank for plastic manufacturers and converters in Kuwait. Waste Manag 29:479–484

    Article  CAS  Google Scholar 

  74. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643

    Article  CAS  Google Scholar 

  75. Miltz J, Ram A, Nir MM (1997) Prospects for application of post-consumer used plastics in food packaging. Food Addit Contam 14:649–659

    Article  CAS  Google Scholar 

  76. Nikje MMA, Nazari F, Imanieh H, Garmarudi AB, Haghshenas M (2007) PET recycling by diethylene glycol-diethanol amine binary mixture and application of product in rigid polyurethane foam formulation. J Macromol Sci A Pure Appl Chem 44:753–758

    Article  CAS  Google Scholar 

  77. Vermeulena, Caneghem JV, Baeyens CBJ, Vandecasteelea C (2011) Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals valorization. J Hazard Mater 190:8–27

    Article  CAS  Google Scholar 

  78. Gilbert J, Rossi L (2000) European priorities for research to support legislation in the area of food contact materials and articles. Food Addit Contam 17:83–127

    Article  CAS  Google Scholar 

  79. Hatzigrigoriou NB, Papaspyrides CD (2011) Nanotechnology in plastic food-contact materials. J Appl Polym Sci 122:3720–3739

    Article  CAS  Google Scholar 

  80. Gantillon B, Spitz R, McKenna TF (2004) The solid state postcondensation of PET, 1 A: review of the physical and chemical processes taking place in the solid state. Macromol Mater Eng 289:88–105

    Article  CAS  Google Scholar 

  81. Carta D, Cao G, Angeli CD (2003) Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–395

    Article  CAS  Google Scholar 

  82. Gersifi KE, Destais-Orvoën N, Durand G, Tersac G (2003) Glycolysis of epoxide-amine hardened networks. I. Diglycidylether/aliphatic amines model networks. Polymer 44(14):3795–3801

    Article  CAS  Google Scholar 

  83. Sabnis AS, Bhave VG, Kathalewar MS, Mare S, Raut PP (2012) New polyester polyol derived from recycled poly (ethylene terephthalate) for coating application. Arch Appl Sci Res 4:85–93

    CAS  Google Scholar 

  84. Dutt K (2010) Studies on the physco-chemical properties and compatibility of polymeric plasticizer with rubber and PVC compound, chap 2, pp 12–13

  85. Shamsi R, Abdouss M, Sadeghi GMM, Taromi A (2009) Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties. Polym Int 58:22–30

    Article  CAS  Google Scholar 

  86. Wang H, Li Z, Liu Y, Zhang X, Zhang S (2009) Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chem 11:1568–1575

    Article  CAS  Google Scholar 

  87. Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak PL (2009) Chitosan: a new versatile biopolymer for various applications. Des Monom Polym 12(5):377–404

    Article  CAS  Google Scholar 

  88. Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour Conserv Recycl 55:34–52

    Article  Google Scholar 

  89. Barth M, Wei R, Oeser T, Then J, Schmidt J, Wohlgemuth F, Zimmermann W (2015) Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. J Membr Sci 494:182–187

    Article  CAS  Google Scholar 

  90. Mulder K, Knot M (2001) PVC plastic: a history of systems development and entrenchment. Technol Soc 23:265–286

    Article  Google Scholar 

  91. Liu Q, Li R, Fang T (2015) Investigating and modeling PET methanolysis under supercritical conditions by response surface methodology approach. Chem Eng J 270:535–541

    Article  CAS  Google Scholar 

  92. Yoshioko T, Motoki T, Okuwaki A (2003) Conversion of a used poly(ethylene terephthalate) bottle into oxalic acid and terephthalic acid by oxygen oxidation in alkaline solutions at elevated temperatures. Ind Eng Chem Res 42:675–679

    Article  CAS  Google Scholar 

  93. Brown Jr G, O’Brien R (1976) Method of recovering terephthalic acid and ethylene glycol from polyester materials. US Patent 3,952,053

  94. Alter H (1986) Disposal and reuse of plastics. In: Mark H (ed) Encyclopedia of polymer science and engineering. Wiley Interscience, New York, pp 103–128

    Google Scholar 

  95. Jamdar V, Kathalewar M, Jagtap RN, Dubey KA, Sabnis A (2015) Effect of γ-irradiation on glycolysis of PET waste and preparation of ecofriendly coatings using bio-based and recycled materials. Polym Eng Sci 55(11):2653–2660

    Article  CAS  Google Scholar 

  96. Campanelli J, Kamal M, Cooper D (1993) A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci 48:443–451

    Article  CAS  Google Scholar 

  97. Kurokawa H, Ohshima M-A, Sugiyama K, Miura H (2003) Methanolysis of polyethylene terephthalate (PET) in the presence of aluminiumtiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym Degrad Stab 79:529–533

    Article  CAS  Google Scholar 

  98. Yang Y, Lu Y, Xiang H, Xu Y, Li Y (2002) Study on methanolyticdepolymerization of PET with supercritical methanol for chemical recycling. Polym Degrad Stab 75:185–191

    Article  CAS  Google Scholar 

  99. Viksne A, Kalnins M, Rence L, Berzina R (2002) Unsaturated polyester resins based on pet waste products from glycolysis by ethylene, propylene, and diethylene glycols and their mixtures. Arab J Sci Eng 27:33–42

    CAS  Google Scholar 

  100. Öztürk Y, Güçlü G (2005) Unsaturated polyester resins obtained from glycolysis products of waste PET. Polym-Plast Technol Eng 43:1539–1552

    Article  CAS  Google Scholar 

  101. Güçlü G, Kasgöz A, Özbudak S, Özgümüs S, Orbay M (1998) Glycolysis of poly(ethylene terephthalate) wastes in xylene. J Appl Polym Sci 69:2311–2319

    Article  Google Scholar 

  102. Aslan S, Immirzi B, Laurienzo P, Malinconico M, Martuscelli E, Volpe MG (1997) Unsaturated polyester resins from glycolysed waste polyethyleneterephthalate: synthesis and comparison of properties and performance with virgin resin. J Mater Sci 32:2329–2336

    Article  CAS  Google Scholar 

  103. Taniguchi I, Lovell NG (2012) Low-temperature processable degradable polyesters. Macromolecules 45:7420–7428

    Article  CAS  Google Scholar 

  104. Soni RK, Singh S (2005) Synthesis and characterization of terephthalamides from poly(ethylene terephthalate) waste. J Appl Polym Sci 96(5):1515–1528

    Article  CAS  Google Scholar 

  105. Jain A, Soni RK (2007) Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res 14:475–481

    Article  CAS  Google Scholar 

  106. Shukla SR, Kapadi PU, Mhaske ST, Mali MN, More A (2015) Synthesis of a secondary plasticizer for poly (vinyl chloride) by recycling of poly (ethylene terephthalate) bottle waste through aminolytic depolymerization. J Vinyl Addit Technol. doi:10.1002/vnl.21494

  107. Spychaj T, Fabrycy E, Spychaj S, Kacperski M (2001) Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate). J Mater Cycles Waste Manag 3:24–31

    CAS  Google Scholar 

  108. Lorenzetti C, Manaresi P, Berti C, Barbiroli G (2006) Chemical recovery of useful chemicals from polyester (PET) waste for resource conservation: a survey of state of the art. J Polym Environ 14:89–101

    Article  CAS  Google Scholar 

  109. Tawfika ME, Eskander SB (2010) Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products. Polym Degrad Stab 95:187–194

    Article  CAS  Google Scholar 

  110. Goje AS, Thakur SA, Patil TM, Mishra S (2003) Glycolytic aminolysis of poly(ethylene terephthalate) waste for recovery of value-added comonomer at atmospheric pressure. J Appl Polym Sci 90:3437–3444

    Article  CAS  Google Scholar 

  111. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  112. Penczek P, Czub P, Pielichowski J (2005) Unsaturated polyester resins: chemistry and technology. Adv Polym Sci 184:1–95

    Article  CAS  Google Scholar 

  113. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91:1850–1854

    Article  CAS  Google Scholar 

  114. Pingale ND, Shukla SR (2009) Microwave-assisted aminolytic depolymerization of PET waste. Eur Polym J 45:2695–2700

    Article  CAS  Google Scholar 

  115. Katoch S, Sharma V, Kumar V, Kundu PP (2009) Synthesis of unsaturated polyester from glycolyzed PET waste and characterization. J Polym Eng 29:199–210

    Article  CAS  Google Scholar 

  116. Grzebienek K, Wesolowski J (2004) Glycolysis of PET waste and the use of glycolysis products in the synthesis of degradable co-polyesters. Fibres Text East Eur 12:19–22

    Google Scholar 

  117. Helwani Z, Othman M, Aziz N, Kim J, Fernando W (2009) Solid heterogeneous catalysts for transesterification of triglyceride with methanol: a review. Appl Catal A 363:1–10

    Article  CAS  Google Scholar 

  118. Pingale ND, Palekar VS, Shukla SR (2010) Glycolysis of postconsumer polyethylene terephthalate waste. J Appl Polym Sci 1:249–254

    Article  CAS  Google Scholar 

  119. Vaidya UR, Nadkarni VM (1988) Polyester polyols for polyurethanes from pet waste: kinetics of polycondensation. J Appl Polym Sci 35:775–785

    Article  CAS  Google Scholar 

  120. Bartolome L, Cho BG, Do Hyun Kim, Imran M, Al-Masry WA (2012) Recent developments in the chemical recycling of PET. In: Achilias D (ed) Material recycling-trends and perspectives.INTECH Open Access Publisher. doi:10.5772/33800

  121. Ghaemy M, Mossaddegh K (2005) Depolymerization of poly(ethylene terephthalate) fibre waste using ethylene glycol. Polym Degrad Stab 90:570–576

    Article  CAS  Google Scholar 

  122. Chen C (2003) Study of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. III. Further investigation. J Appl Polym Sci 87:2004–2010

    Article  CAS  Google Scholar 

  123. Xi G, Lu M, Sun C (2005) Depolymerization of waste PET into monomer of BHET. Polym Degrad Stab 87:117–120

    Article  CAS  Google Scholar 

  124. Goje A, Mishra S (2003) Chemical kinetics, simulation, and thermodynamics of glycolytic depolymerization of poly(ethylene terephthalate) waste with catalyst optimization for recycling of value added monomeric products. Macromol Mater Eng 288:326–336

    Article  CAS  Google Scholar 

  125. Dayang R, Ahmad I, Ramli A (2006) Chemical recycling of PET waste from softdrink bottles to produce a thermosetting polyester resin. Malays J Chem 8:22–26

    Google Scholar 

  126. Tan C, Ahmad I, Heng M (2011) Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Mater Des 32:4493–4501

    Article  CAS  Google Scholar 

  127. Campanelli J, Kamal M, Cooper D (1994) Kinetics of glycolysis of poly(ethylene terephthalate) melts. J Appl Polym Sci 54:1731–1740

    Article  CAS  Google Scholar 

  128. Troev K, Grancharov G, Tsevi R, Gitsov I (2003) A novel catalyst for the glycolysis of poly(ethylene terephthalate). J Appl Polym Sci 90:1148–1152

    CAS  Google Scholar 

  129. Shukla S, Palekar V, Pingale N (2008) Zeolite catalyzed glycolysis of poly(ethylene terephthalate) bottle waste. J Appl Polym Sci 110:501–516

    Article  CAS  Google Scholar 

  130. Shukla S, Harad A, Jawale L (2009) Chemical recycling of PET waste into hydrophobic textile dyestuffs. Polym Degrad Stab 94:604–609

    Article  CAS  Google Scholar 

  131. López-Fonseca R, Duque-Ingunza I, de Rivas B, Arnaiz S, Gutiérrez-Ortiz J (2010) Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym Degrad Stab 95:1022–1028

    Article  CAS  Google Scholar 

  132. Pingale ND, Shukla SR (2008) Microwave assisted ecofriendly recycling of poly(ethylene terepthalate) bottle waste. Eur Polym J 44:4151–4156

    Article  CAS  Google Scholar 

  133. Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10:77–86

    Article  CAS  Google Scholar 

  134. Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112

    Article  CAS  Google Scholar 

  135. Huseyinavnikirmaci B (2010) Functional milks and dairy beverages. Int J Dairy Technol 63:1–15

    Article  CAS  Google Scholar 

  136. Björklund A, Finnveden G (2005) Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44(4):309–317

    Article  Google Scholar 

  137. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    Article  CAS  Google Scholar 

  138. Zhou GH, Xu XL, Liu Y (2010) Preservation technologies for fresh meat—A review. Meat Sci 86:119–128

    Article  CAS  Google Scholar 

  139. Cherubini F, Bargigli S, Ulgiati S (2008) Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Waste Manag 28:2552–2564

    Article  Google Scholar 

  140. Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—An overview. Environ Sci Technol 35:429–467

    Article  CAS  Google Scholar 

  141. Petersen K, Nielsen VP, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) A review: potential of bio based materials for food packaging. Trends Food Sci Technol 10:52–68

    Article  CAS  Google Scholar 

  142. Calcott P, Walls M (2005) Waste, recycling, and ‘‘design for environment’’: roles for markets and policy instruments. Resour Energy Econ 27:287–305

    Article  Google Scholar 

  143. Wang J, Han L, Li S (2008) The collection system for residential recyclables in communities in Haidian District, Beijing: a possible approach for China recycling. Waste Manag 28:1672–1680

    Article  CAS  Google Scholar 

  144. Shukla S, Kulkarni K (2002) Depolymerization of poly(ethylene terephthalate) waste. J Appl Polym Sci 85:1765–1770

    Article  CAS  Google Scholar 

  145. Sinha V, Patel M, Patel J (2008) PET waste management by chemical recycling: a review. J Polym Environ 18:8–25

    Article  CAS  Google Scholar 

  146. Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5:1–18

    Article  CAS  Google Scholar 

  147. Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B, Patel MK (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 16:169–181

    Article  CAS  Google Scholar 

  148. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev 14:233–248

    Article  CAS  Google Scholar 

  149. Couth R, Troi C (2010) Carbon emissions reduction strategies in Africa from improved waste management: a review. Waste Manag 30:2336–2346

    Article  CAS  Google Scholar 

  150. Jagur-Grodzinski J (2006) Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol 17:395–418

    Article  CAS  Google Scholar 

  151. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  152. Horn D, Rieger J (2001) Organic nano particles in the aqueous phase—Theory, experiment, and use. AngewandteChemie-Int Edn 40:4330–4361

  153. Rafael A, Auras S, Singh P, Singh JJ (2005) Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18:207–216

    Article  CAS  Google Scholar 

  154. Triantafyllou VI, Karamani AG, Akrida-Demertzi K, Demertzis PG (2002) Studies on the usability of recycled PET for food packaging applications. Eur Food Technol 215:243–248

    Article  CAS  Google Scholar 

  155. Juliano P, Koutchma T, Sui Q, Barbosa-Cánovas GV, Sadler G (2010) Polymericbased food packaging for high-pressure processing. Food Eng Rev 2:274–297

    Article  CAS  Google Scholar 

  156. Arvanitoyannisa I, Biliaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: part 1. Carbohydr Polym 36:89–104

    Article  Google Scholar 

  157. Sachdeva S (2016) Biomedical waste and solid waste management draft rules India, 2015: a comment. Int J Health Allied Sci 5:129–132

    Article  Google Scholar 

  158. Chowdhury MN (2016) Legal and institutional framework for sustainable solid waste management. In: Sustainable solid waste management. American Society of Civil Engineers Publisher, pp 653–691

  159. Dinler DŞ (2016) New forms of wage labour and struggle in the informal sector: the case of waste pickers in Turkey. Third World Quart 37(10):1834–1854

    Article  Google Scholar 

  160. Imran M, Lee K, Imtiaz Q, Kim B, Han M, Cho B, Kim D (2011) Metal-Oxide-Doped silica nanopaticles for the catalytic glycolysis of polyethylene terephthalate. J Nanosci Nanotechnol 1:824–828

    Article  CAS  Google Scholar 

  161. Yue Q, Wang Z ,Zhang LN, Ni Y, Jin Y (2011) Glycolysis of poly(ethylene terephthalate) using basic ionic liquids catalysts. J Polymer Degradradation Stab 96(4):399–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N., Kumar, P., Shrivastava, S. et al. An overview on PET waste recycling for application in packaging. Int J Plast Technol 21, 1–24 (2017). https://doi.org/10.1007/s12588-016-9164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-016-9164-1

Keywords

Navigation