Skip to main content

Waste to Best: Chemical Recycling of Polyethylene Terephthalate (PET) for Generation of Useful Molecules

  • Conference paper
  • First Online:
Tailored Functional Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 15))

  • 647 Accesses

Abstract

The consumption and production of plastics across the globe has increased at an alarming rate over the last few decades. Commodity plastics, especially PET (polyethylene terephthalate), have significant properties like versatility, durability, light, and cheap. Because of the above mentioned properties, increasing use of plastic products can be observed (e.g., packaging, paints, construction, pharmaceutical, etc.), which eventually caused the subsequent rise in plastic waste generation from last many years. Properties of strength and durability which make the PET so useful during their functional lifetimes are profound drawbacks at end-of-life because the used PET materials are overwhelmingly landfilled or leaked into the environment. The demand and utilization of PET by consumers as well as by industries have increased enormously due to its various applications and high global consumption. Therefore, a considerable requirement of cost-effective and environmentally safe recycling is necessitated to reduce the growing pressure on the environment. The present study aims to discuss different approaches for recycling of PET waste with their limitations and scope. Moreover, the review mainly focuses on different aspects of the chemical recycling of PET waste in a detailed manner and how it surpasses the other methods of PET recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pudack C, Stepanski M, Fässler P (2020) PET Recycling-Contributions of crystallization to sustainability. Chem Ing Tec 92(4):452–458

    Article  CAS  Google Scholar 

  2. Crippa M, Morico B (2020) PET depolymerization: a novel process for plastic waste chemical recycling. Catal, Green Chem Sustain Energy 179:215–219

    CAS  Google Scholar 

  3. Duque-Ingunza I et al (2014) Process optimization for catalytic glycolysis of post-consumer PET wastes. J Chem Technol Biotechnol 89(1):97–103

    Article  CAS  Google Scholar 

  4. Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529

    Article  CAS  Google Scholar 

  5. Elamri A et al (2017) Progress in polyethylene terephthalate recycling. Nova Science Publishers

    Google Scholar 

  6. Syariffuddeen A, Norhafizah A, Salmiaton A (2012) Glycolysis of poly (ethylene terephthalate) (PET) waste under conventional convection-conductive glycolysis. Int J Eng Res Technol 1(10):1–8

    Google Scholar 

  7. Thiounn T, Smith RC (2020) Advances and approaches for chemical recycling of plastic waste. J Polym Sci 58(10):1347–1364

    Article  CAS  Google Scholar 

  8. Vollmer I et al (2020) Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Ed 59(36):15402–15423

    Article  CAS  Google Scholar 

  9. Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manage 69:24–58

    Article  CAS  Google Scholar 

  10. Tarannum N et al (2022) Chemical depolymerization of recycled PET to oxadiazole and hydrazone derivatives: synthesis, characterization, molecular docking and DFT study. J King Saud Univ-Sci 34(1):101739

    Article  Google Scholar 

  11. Chan K, Zinchenko A (2021) Conversion of waste bottles’ PET to a hydrogel adsorbent via PET aminolysis. J Environ Chem Eng 9(5):106129

    Article  CAS  Google Scholar 

  12. Ahangar FA et al (2021) Conversion of waste polyethylene terephthalate (PET) polymer into activated carbon and its feasibility to produce green fuel. Polymers 13(22):3952

    Article  CAS  Google Scholar 

  13. Sharma K et al (2020) Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Manage 107:227–234

    Article  CAS  Google Scholar 

  14. Ilyas M et al (2018) Plastic waste as a significant threat to environment–a systematic literature review. Rev Environ Health 33(4):383–406

    Article  Google Scholar 

  15. Verma R et al (2016) Toxic pollutants from plastic waste-a review. Procedia Environ Sci 35:701–708

    Article  CAS  Google Scholar 

  16. Bartolome L et al (2012) Recent developments in the chemical recycling of PET. Mater Recycl-Trends Perspect 406

    Google Scholar 

  17. Park SH, Kim SH (2014) Poly (ethylene terephthalate) recycling for high value added textiles. Fashion Textiles 1(1):1–17

    Article  Google Scholar 

  18. Zhou X (2021) Research on conversion of waste polyethylene terephthalate into value-added monomer replacing landfill and incineration for environmental pollution control. In: IOP conference series: earth and environmental science. IOP Publishing

    Google Scholar 

  19. Shahnawaz M, Sangale MK, Ade AB (2019) Plastic waste disposal and reuse of plastic waste. Bioremediation technology for plastic waste. Springer, pp 21–30

    Chapter  Google Scholar 

  20. Sharuddin SDA et al (2016) A review on pyrolysis of plastic wastes. Energy Convers Manage 115:308–326

    Article  CAS  Google Scholar 

  21. Kamali AR, Yang J, Sun Q (2019) Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity. Appl Surf Sci 476:539–551

    Article  CAS  Google Scholar 

  22. Zhang H et al (2021) Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation. Sci Total Environ 772:145309

    Article  CAS  Google Scholar 

  23. Qureshi MS et al (2020) Pyrolysis of plastic waste: opportunities and challenges. J Anal Appl Pyrol 152:104804

    Article  CAS  Google Scholar 

  24. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2(4):24

    Article  Google Scholar 

  25. Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res 10(6):390–394

    Article  CAS  Google Scholar 

  26. Achilias D, Karayannidis G (2004) The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut Focus 4(4):385–396

    Article  CAS  Google Scholar 

  27. Sinha V, Patel MR, Patel JV (2010) PET waste management by chemical recycling: a review. J Polym Environ 18(1):8–25

    Article  CAS  Google Scholar 

  28. Crippa M, Morico B (2020) Catalysis, green chemistry and sustainable energy

    Google Scholar 

  29. Park H et al (2014) Assessment of Firefighters’ needs for personal protective equipment. Fashion and Textiles 1(1):1–13

    Article  Google Scholar 

  30. Shojaei B, Abtahi M, Najafi M (2020) Chemical recycling of PET: a stepping-stone toward sustainability. Polym Adv Technol 31(12):2912–2938

    Article  CAS  Google Scholar 

  31. Kim B-K et al (2008) Chemical recycling of poly (ethylene terephthalate) using a new hybrid process. J Chem Eng Jpn 41(9):923–928

    Article  CAS  Google Scholar 

  32. Pham DD, Cho J (2021) Low-energy catalytic methanolysis of poly (ethyleneterephthalate). Green Chem 23(1):511–525

    Article  CAS  Google Scholar 

  33. Genta M et al (2005) Depolymerization mechanism of poly (ethylene terephthalate) in supercritical methanol. Ind Eng Chem Res 44(11):3894–3900

    Article  CAS  Google Scholar 

  34. Al-Sabagh A et al (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25(1):53–64

    Article  Google Scholar 

  35. Kang MJ et al (2020) Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem Eng J 398:125655

    Article  CAS  Google Scholar 

  36. Cosimbescu L et al (2021) Simple but tricky: investigations of terephthalic acid purity obtained from mixed PET waste. Ind Eng Chem Res 60(35):12792–12797

    Article  CAS  Google Scholar 

  37. Yoshioka T, Motoki T, Okuwaki A (2001) Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res 40(1):75–79

    Article  CAS  Google Scholar 

  38. Abedsoltan H et al (2021) Poly (4-styrenesulfonic acid): a recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate. Polymer 222:123620

    Article  CAS  Google Scholar 

  39. Pingale ND, Palekar VS, Shukla S (2010) Glycolysis of postconsumer polyethylene terephthalate waste. J Appl Polym Sci 115(1):249–254

    Article  CAS  Google Scholar 

  40. Liu B et al (2018) Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy. Ind Eng Chem Res 57(48):16239–16245

    Article  CAS  Google Scholar 

  41. George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly (ethylene terephthalate) waste. Ind Eng Chem Res 53(37):14185–14198

    Article  CAS  Google Scholar 

  42. Shukla S, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91(8):1850–1854

    Article  CAS  Google Scholar 

  43. Collins MJ, Zeronian SH, Marshall ML (1991) Analysis of the molecular weight distributions of aminolyzed poly (ethylene terephthalate) by using gel permeation chromatography. J Macromol Sci—Chem 28(8):775–792

    Google Scholar 

  44. Ghorbantabar S et al (2021) Investigation of conventional analytical methods for determining conversion of polyethylene terephthalate waste degradation via aminolysis process. J Mater Cycles Waste Manage 23(2):526–536

    Article  CAS  Google Scholar 

  45. Zhang L-N et al (2014) From aminolysis product of PET waste to value-added products of polymer and assistants. Polym Polym Compos 22(1):13–16

    CAS  Google Scholar 

  46. More AP et al (2017) Studies of different techniques of aminolysis of poly (ethylene terephthalate) with ethylenediamine. Polym Bull 74(8):3269–3282

    Article  CAS  Google Scholar 

  47. Jain A, Soni R (2007) Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res 14(6):475–481

    Article  CAS  Google Scholar 

  48. Thachnatharen N, Shahabuddin S, Sridewi N (2021) The waste management of polyethylene terephthalate (PET) plastic waste: a review. In: IOP conference series: materials science and engineering. IOP Publishing

    Google Scholar 

  49. Soni R, Singh S (2005) Synthesis and characterization of terephthalamides from poly (ethylene terephthalate) waste. J Appl Polym Sci 96(5):1515–1528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Shahabuddin or Rama Gaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radadiya, R., Shahabuddin, S., Gaur, R. (2022). Waste to Best: Chemical Recycling of Polyethylene Terephthalate (PET) for Generation of Useful Molecules. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_19

Download citation

Publish with us

Policies and ethics