Skip to main content

Recent Innovations in Chemical Recycling of Polyethylene Terephthalate Waste: A Circular Economy Approach Toward Sustainability

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

This chapter introduces the recent innovative trends in the sustainable and green chemical recycling of post-consumer-discarded polyethylene terephthalate (PET) waste and their pertinence to substantiate and understand the conception of circular economy. This chapter also includes a comprehensive worldwide view on linear economy of plastics, especially PET, and its shift onto circular economy. PET is a multipurpose and highly recyclable polymer resin. It is a thermoplastic polyester synthesized through the polymerization reaction between ethylene glycol (EG) and terephthalic acid, initially prepared in 1940 by DuPont chemists in North America. PET is a comparatively inexpensive, resealable, burst-resistant, light in weight, and recyclable in nature. Due to thermostability, transparency, and optimum strength, the PET became a first pick for packaging material. The PET is a nonbiodegradable in nature; therefore post-consumer-discarded PET (called PET waste) needs to be recycled for further use inclining the sustainability aspect. The PET resin and package productions being used nowadays are progressively streamlined and consume energy in less amount; thus PET bottles are subjected for recycling and depolymerized back into monomers and/or oligomers through various chemical methods such as hydrolysis, methanolysis, glycolysis, etc. after serving the primary application. The waste management is a transition step toward a circular economy. From the synthesis of PET for primary end use to its chemical depolymerization assignment, various dependent aspects of circular economy such as local economy, global trade, and short- and long-term business associations play a vital role. The policy makers must ensure that each bit of the waste disposal practices has an accordance with circular economy, human health, as well as the environment ecosystem. It is a high time for the India to ameliorate the availability and accessibility of policy-related information for common man to make them aware about the importance and the need of plastic recycling in order to conserve the nonrenewable sources. As per the PET Resin Association (PETRA, USA) report, in 2012, the PET recycling rate was ~31% in the USA, where 52% in European Union. According to the Environmental Protection Agency (EPA, USA), the municipal solid waste in the USA contains ~1% (w/w) PET waste materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.Y. Abdelaal, T.R. Sobahi, M.S.I. Makki, Chemical transformation of pet waste through glycolysis. Constr. Build. Mater. 25(8), 3267–3271 (2011)

    Google Scholar 

  • J. Aguado, D. Serrano, Feedstock Recycling of Plastic Wastes (The Royal Society of Chemistry, Cambridge, UK, 1999). ISBN 0-85404-531-7

    Google Scholar 

  • S. Al-Salem, Establishing an integrated databank for plastic manufacturers and converters in Kuwait. Waste Manag. 29(1), 479–484 (2009)

    CAS  Google Scholar 

  • S. Al-Salem, J. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 29(10), 2625–2643 (2009)

    CAS  Google Scholar 

  • L. Bartolome, M. Imran, B.G. Cho, W.A. Al-Masry, D.H. Kim, Recent developments in the chemical recycling of PET, in Material Recycling – Trends and Perspectives, ed. by D. Achilias, (InTech, London, SW7 2QJ, United Kingdom, 2012), p. 406

    Google Scholar 

  • N.M. Bocken, I. De Pauw, C. Bakker, B. Van Der Grinten, Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 33(5), 308–320 (2016)

    Google Scholar 

  • J. Campanelli, M. Kamal, D. Cooper, Kinetics of glycolysis of poly(ethylene terephthalate) melts. J. Appl. Polym. Sci. 54(11), 1731–1740 (1994). ISSN 1097-4628

    CAS  Google Scholar 

  • S. Chaudhary, P. Surekha, D. Kumar, C. Rajagopal, P.K. Roy, Microwave assisted glycolysis of poly (ethylene terephthalate) for preparation of polyester polyols. J. Appl. Polym. Sci. 129(5), 2779–2788 (2013)

    Google Scholar 

  • J. Chen, L. Chen, The glycolysis of poly(ethylene terephthalate). J. Appl. Polym. Sci. 73(1), 35–40 (1999). ISSN 1097-4628

    CAS  Google Scholar 

  • M. Crippa, B. Morico, PET depolymerization: A novel process for plastic waste chemical recycling, in Studies in Surface Science and Catalysis, vol. 179, (Elsevier, 2019), pp. 215–229. https://doi.org/10.1016/B978-0-444-64337-7.00012-4

    Chapter  Google Scholar 

  • G.M. de Carvalho, E.C. Muniz, A.F. Rubira, Hydrolysis of post-consume poly (ethylene terephthalate) with sulfuric acid and product characterization by WAXD, 13C NMR and DSC. Polym. Degrad. Stab. 91(6), 1326–1332 (2006)

    Google Scholar 

  • A. Eberl, S. Heumann, T. Brückner, et al., Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzyloxy-yethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J. Biotechnol. 143(3), 207–212 (2009)

    CAS  Google Scholar 

  • G. Fischer-Colbrie, S. Heumann, S. Liebminger, E. Almansa, A. Cavaco-Paulo, G.M. Guebitz, New enzymes with potential for PET surface modification. Biocatal. Biotransformation 22(5–6), 341–346 (2004)

    CAS  Google Scholar 

  • R. Francis (ed.), Recycling of Polymers: Methods, Characterization and Applications (Wiley, New Jersey, USA, 2016)

    Google Scholar 

  • P.K. George, S.A. Dimitris, Chemical recycling of poly (ethylene terephthalate). Macromol. Mater. Eng. 292, 128–146 (2007)

    Google Scholar 

  • V.B. Gupta, Z. Bashir, Chapter 7, in Handbook of Thermoplastic Polyesters, ed. by S. Fakirov, (Wiley-VCH, Weinheim, 2002), p. 320. ISBN 3-527-30113-5

    Google Scholar 

  • Z. Helwani, M. Othman, N. Aziz, J. Kim, W. Fernando, Solid Heterogeneous catalysts for transesterification of triglyceride with methanol: A review. Appl. Catal. A Gen. 363(1–2), 1–10 (2009). ISSN 0926-860X

    CAS  Google Scholar 

  • M. Hong, E.Y.X. Chen, Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 19(16), 3692–3706 (2017). https://doi.org/10.1039/C7GC01496A

    Article  CAS  Google Scholar 

  • M. Imran, B.K. Kim, M. Han, B.G. Cho, Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis (2-hydroxyethyl) terephthalate (BHET). Polym. Degrad. Stab. 95(9), 1686–1693 (2010)

    CAS  Google Scholar 

  • M. Imran, D.H. Kim, W.A. Al-Masry, et al., Manganese-cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym. Degrad. Stab. 98(4), 904–915 (2013)

    CAS  Google Scholar 

  • G.P. Karayannidis, A.P. Chatziavgoustis, D.S. Achilias, Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv. Polym. Technol. J. Polym. Process. Inst. 21(4), 250–259 (2002)

    CAS  Google Scholar 

  • M. Khoonkari, A.H. Haghighi, Y. Sefidbakht, K. Shekoohi, A. Ghaderian, Chemical recycling of PET wastes with different catalysts. Int. J. Polym. Sci. e124524, 1–11 (2015)

    Google Scholar 

  • B. Kuczenski, R. Geyer, PET bottle reverse logistics – Environmental performance of California’s CRV program. Int. J. Life Cycle Assess. 18(2), 456–471 (2013)

    CAS  Google Scholar 

  • R. L’opez-Fonseca, I. Duque-Ingunza, B. de Rivas, S. Arnaiz, J.I. Guti’errez-Ortiz, Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym. Degrad. Stab. 95(6), 1022–1028 (2010)

    Google Scholar 

  • R. L’opez-Fonseca, I. Duque-Ingunza, B. de Rivas, L. Flores-Giraldo, J.I. Guti’errez-Ortiz, Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem. Eng. J. 168(1), 312–320 (2011)

    Google Scholar 

  • J.Z. Liang, The melt flow properties of poly (propylene)/glass bead composites. Macromol. Mater. Eng. 286(11), 714–718 (2001)

    CAS  Google Scholar 

  • M. Lieder, A. Rashid, Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 115, 36–51 (2016)

    Google Scholar 

  • G. Lonca, P. Lesage, G. Majeau-Bettez, S. Bernard, M. Margni, Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the USA PET market. Resour. Conserv. Recycl. 162, 105013 (2020)

    Google Scholar 

  • E. Marten, R.-J. Müller, W.-D. Deckwer, Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym. Degrad. Stab. 88(3), 371–381 (2005)

    CAS  Google Scholar 

  • R. Meys, F. Frick, S. Westhues, A. Sternberg, J. Klankermayer, A. Bardow, Towards a circular economy for plastic packaging wastes–the environmental potential of chemical recycling. Resour. Conserv. Recycl. 162, 105010 (2020)

    Google Scholar 

  • T. Oeser, R. Wei, T. Baumgarten, S. Billig, C. Föllner, W. Zimmermann, High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J. Biotechnol. 146(3), 100–104 (2010)

    CAS  Google Scholar 

  • G.A. Olah, A. Goeppert, G.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74(2), 487–498 (2009)

    CAS  Google Scholar 

  • P. Parashar, P.K. Bohre, D.D. Agarwal, N. Richhariya, Recycling of polystyrene using hydrotalcite as degradation catalyst. Int. J. Mod. Eng. Manag. Res. 1(3), 53–56 (2013)

    Google Scholar 

  • D. Ribitsch, A.O. Yebra, S. Zitzenbacher, et al., Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. Biomacromolecules 14(6), 1769–1776 (2013)

    CAS  Google Scholar 

  • D. Ribitsch, E. Herrero Acero, A. Przylucka, et al., Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl. Environ. Microbiol. 81(11), 3586–3592 (2015)

    CAS  Google Scholar 

  • D. Rochat, C.R. Binder, J. Diaz, O. Jolliet, Combining material flow analysis, life cycle assessment, and multiattribute utility theory: Assessment of end-of-life scenarios for polyethylene terephthalate in Tunja, Colombia. J. Ind. Ecol. 17(5), 642–655 (2013)

    CAS  Google Scholar 

  • A.M. Ronkvist, W. Xie, W. Lu, R.A. Gross, Cutinase catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42(14), 5128–5138 (2009)

    CAS  Google Scholar 

  • J. Scheirs, T. E. Long (eds.), Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (Wiley, New Jersey, USA, 2005). ISBN 0-471-49856-4

    Google Scholar 

  • U. Schuchardt, R. Sercheli, R. Varga, Transesterification of vegetable oils: A review. J. Braz. Chem. Soc. 9(3), 199–210 (1998). ISSN 0103-5053

    CAS  Google Scholar 

  • P.A. Schulte, L.T. McKernan, D.S. Heidel, et al., Occupational safety and health, green chemistry, and sustainability: A review of areas of convergence. Environ. Health 12, 31 (2013)

    Google Scholar 

  • C. Setboonsarng, Plastics Maker Indorama Commits $1.5 Billion to Recycling (Reuters, Bangkok, 2019)

    Google Scholar 

  • V. Sharma, P. Parashar, P. Srivastava, S. Kumar, D.D. Agarwal, N. Richharia, Recycling of waste PET-bottles using dimethyl sulfoxide and hydrotalcite catalyst. J. Appl. Polym. Sci. 129(3), 1513–1519 (2013)

    CAS  Google Scholar 

  • C. Silva, S. Da, N. Silva, et al., Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnol. J. 6(10), 1230–1239 (2011)

    CAS  Google Scholar 

  • A. Singh, K. Kumari, P.P. Kundu, Extrusion and evaluation of chitosan assisted AgNPs immobilized film derived from waste polyethylene terephthalate for food packaging applications. J. Packag. Technol. Res. 1(3), 165–180 (2017)

    Google Scholar 

  • A. Singh, M. Khamrai, S. Samanta, K. Kumari, P.P. Kundu, Microbial, physicochemical, and sensory analyses-based shelf life appraisal of white fresh cheese packaged into PET waste-based active packaging film. J. Packag. Technol. Res. 2(2), 125–147 (2018)

    Google Scholar 

  • A. Singh, S.L. Banerjee, V. Dhiman, S.K. Bhadada, P. Sarkar, M. Khamrai, … P.P Kundu, Fabrication of calcium hydroxyapatite incorporated polyurethane-graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. Polymer. 195, 122436 (2020)

    Google Scholar 

  • J. Then, R. Wei, T. Oeser, et al., Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol. J. 10, 592–598 (2015)

    CAS  Google Scholar 

  • U. K. Thiele (ed.), Polyester Bottle Resins (Heidelberg Business Media, Germany, 2007). ISBN 978-3-9807497-4-9

    Google Scholar 

  • Y. Tokiwa, T. Suzuki, Hydrolysis of polyesters by lipases. Nature 270(5632), 76–78 (1977)

    CAS  Google Scholar 

  • Y. Tokiwa, B.P. Calabia, C.U. Ugwu, S. Aiba, Biodegrad- ability of plastics. Int. J. Mol. Sci. 10(9), 3722–3742 (2009)

    CAS  Google Scholar 

  • A. Tukker, Product services for a resource-efficient and circular economy – A review. J. Clean. Prod. 97, 76–91 (2015)

    Google Scholar 

  • M.A.M.E. Vertommen, V.A. Nierstrasz, M.V.D. Veer, M.M.C.G. Warmoeskerken, Enzymatic surface modification of poly(ethylene terephthalate). J. Biotechnol. 120(4), 376–386 (2005)

    CAS  Google Scholar 

  • H. Wang, Z. Li, Y. Liu, X. Zhang, S. Zhang, Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chem. 11(10), 1568–1575 (2009a). ISSN 1463-9262

    CAS  Google Scholar 

  • H. Wang, Y. Liu, Z. Li, X. Zhang, S. Zhang, Y. Zhang, Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur. Polym. J. 45(5), 1535–1544 (2009b). ISSN 0014-3057

    CAS  Google Scholar 

  • F. Welle, Twenty years of PET bottle to bottle recycling – An overview. Resour. Conserv. Recycl. 55(11), 865–875 (2011)

    Google Scholar 

  • H. Xue, F. Wang, G. Li, P. Liu, Y. Bai, K. Wang, Synthesis method and its influence factors of hydrotalcite-like compounds. Adv. Mater. Res. 690–693, 351–354 (2013)

    Google Scholar 

  • T. Yoshioka, T. Motoki, A. Okuwaki, Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind. Eng. Chem. Res. 40(1), 75–79 (2001)

    CAS  Google Scholar 

  • Q. Yue, Z. Wang, L. Zhang, Y. Ni, Y. Jin, Glycolysis of poly(ethylene terephthalate) using basic ionic liquids catalysts. Polym. Degrad. Stab. 96(4), 399–403 (2011). ISSN 0141-3910

    CAS  Google Scholar 

  • F. Zhijun, Y. Nailing, Putting a circular economy into practice in China. Sustain. Sci. 2, 95–101 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, A., Banerjee, S.L., Kumari, K., Kundu, P.P. (2022). Recent Innovations in Chemical Recycling of Polyethylene Terephthalate Waste: A Circular Economy Approach Toward Sustainability. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_53

Download citation

Publish with us

Policies and ethics