Skip to main content
Log in

Properties of Argon–Nitrogen Atmospheric Pressure DC Arc Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of nitrogen addition (1–20 %) on atmospheric argon DC arc plasma parameters was investigated. Nitrogen was added to three initial plasma gas compositions: pure argon gas, argon gas with water aerosol, and argon gas with water aerosol containing 0.5 % KCl. Admixtures of nitrogen from 1 up to 10 % (in the case of Ar–N2–water aerosol plasma) or up to 5 % (in the presence of 0.5 % KCl) produced a more contracted discharge, with larger gradients of electron number density and temperature, as compared to plasma without molecular gas addition. The opposite effect was observed in gas mixtures with 20 % of nitrogen. In that case, the arc core was expanded, and the radial profile of electron density and temperature became flatter as compared to the case of pure argon plasma. The changes in the radial structure of the discharge could be explained by increased thermal conductivity of mixed gas plasma and the presence of molecular ions. Increasing nitrogen content brings plasma closer to thermal equilibrium. To evaluate the effect of nitrogen upon analytic performance of the arc source, limits of detection (LODs) were measured for Zn, Cu, Li, and Rb. In plasma without KCl, the addition of nitrogen resulted in lowering of LODs for Cu, Li and Rb, while the opposite was observed for Zn. In the presence of KCl the addition of nitrogen had little or no effect on LODs for Cu, Li and Rb, while detection limits for Zn were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30

    Article  Google Scholar 

  2. Lehn SA, Hieftje GM (2003) Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma. Spectrochim Acta B 58:1821–1836

    Article  Google Scholar 

  3. Broekaert JAC (2000) State-of-the-art and trends of development in analytical atomic spectrometry with inductively coupled plasmas as radiation and ion sources. Spectrochim Acta 55:739–751

    Article  Google Scholar 

  4. van de Sande MJ, van Eck P, Sola A, van der Mullen JJAM (2002) The relation between internal and external parameters of a spectrochemical inductively coupled plasma. Spectrochim Acta 57:829–842

    Article  Google Scholar 

  5. Raeymaekers B, Broekaert JAC, Leis F (1988) Radially resolved rotational temperatures in nitrogen–argon, oxygen–argon, air–argon and argon ICPs. Spectrochim Acta B 43:941–949

    Article  Google Scholar 

  6. Louie H, Yoke-Peng SS (1992) Use of nitrogen and hydrogen in inductively coupled plasma mass spectrometry. J Anal At Spectrom 7:557–563

    Article  CAS  Google Scholar 

  7. Lindner H, Bogaerts A (2011) Multi-element model for the simulation of inductively coupled plasmas: effects of helium addition to the central gas stream. Spectrochim Acta 66:421–431

    Article  CAS  Google Scholar 

  8. Montaser A, Van Hoven RL, Barnes RM (1987) Mixed-gas, molecular-gas, and helium inductively coupled plasmas for analytical atomic spectrometry: a critical review. C R C Crit Rev Anal Chem 18:45–103

    Article  CAS  Google Scholar 

  9. Montaser A, Golightly DW (1992) Inductively coupled plasmas in analytical atomic spectrometry. VCH Publishers, New York

    Google Scholar 

  10. Kuzmanović M, Savović J, Pavlović MS, Stoiljković M, Ranković D, Momčilović M (2010) Delayed responses of analyte emission in a pulse-modulated direct-current argon arc at atmospheric pressure. Plasma Sources Sci Technol 19:065019

    Article  Google Scholar 

  11. Tripkovic M, Holclajtner-Antunovic I, Marinkovic M, Markovic D (2001) The improvement of the detection power of U-shaped DC plasma. J Serb Chem Soc 66:249–258

    CAS  Google Scholar 

  12. Pavlovic MS, Kuzmanovic MM, Pavelkic VM, Marinkovic M (2000) The role of demixing effect in analyte emission enhancement by easily ionized elements in d.c. plasma. Spectrochim Acta B 55:1373–1384

    Article  Google Scholar 

  13. Ranković D, Kuzmanović M, Savović J, Pavlović MS, Stoiljković M, Momčilović M (2010) The effect of potassium addition on plasma parameters in argon dc plasma arc. J Phys D Appl Phys 43:335202

    Article  Google Scholar 

  14. Agatemor C, Beauchemin D (2011) Towards the reduction of matrix effects in inductively coupled plasma mass spectrometry without compromising detection limits: the use of argon–nitrogen mixed-gas plasma. Spectrochim Acta B 66:1–11

    Article  Google Scholar 

  15. Marinkovic M, Antonijevic VG (1980) Evaluation of the detection capability of a U-shaped d.c. arc for spectrometric analysis of solutions. Spectrochim Acta B 35:129–138

    Article  Google Scholar 

  16. Zhovtyansky VA, Lelyukh YuI, Ppatriyuk VM (2008) 1. Assumption of equilibrium state of plasma. Ukr J Phys 53:763–769

    CAS  Google Scholar 

  17. Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183

    Article  CAS  Google Scholar 

  18. Zikic R, Gigosos MA, Ivkovic M, Gonzalez MA, Konjevic NA (2002) Program for the evaluation of electron number density from experimental hydrogen balmer beta line profiles. Spectrochim Acta B 57:987–998

    Article  Google Scholar 

  19. van der Mullen JAM (1990) On the atomic state distribution function in inductively coupled plasmas-II. The stage of local thermal equilibrium and its validity region. Spectrochim Acta B 45:1–13

    Article  Google Scholar 

  20. Benilov MS (1999) Modeling of a nonequilibrium cylindrical column of a low-current arc discharge. IEEE Trans Plasma Sci 27:1458–1463

    Article  Google Scholar 

  21. Blades MW, Caughlin BL, Walker ZH, Burton LL (1987) Excitation, ionization and spectral line emission in the inductively coupled plasma. Prog Anal Spectrosc 10:57–109

    CAS  Google Scholar 

  22. Baronnet J-M, Ershov-Pavlov EA, Megy S (1999) Plasma parameters of an argon DC arc with graphite electrodes. J Phys D Appl Phys 32:2552–2559

    Article  CAS  Google Scholar 

  23. McBride BJ, Gordon S (1999) Chemical equilibrium with applications (CEA). [http://www.grc.nasa.gov/WWW/CEAWeb/]. Accessed in 2014

  24. Gordon MH, Kruger CH (1993) Nonequilibrium effects of diluent addition in recombining argon plasma. Phys Fluids 5:1014–1023

    Article  CAS  Google Scholar 

  25. Lochte-Holtgreven W, Richter J (1968) Quantitative spectroscopy and spectral photometry plasma diagnostics. North-Holland, Amsterdam

    Google Scholar 

  26. Ralchenko Yu, Kramida AE, Reader J, NIST ASD Team (2008) NIST atomic spectra database (version 3.1.5), National Institute of Standards and Technology, Gaithersburg. http://physics.nist.gov/asd3. Accessed 14 Jan 2010

  27. Bussiere W, Vacher D, Menecier S, Andre P (2011) Comparative study of an argon plasma and an argon copper plasma produced by an ICP torch at atmospheric pressure based on spectroscopic methods. Plasma Sources Sci Technol 20:045004

    Article  Google Scholar 

  28. Savovic JJ, Kuzmanovic M, Pavlovic MS, Stoiljkovic M, Momcilovic M (2008) A spectroscopic investigation of stabilized dc argon arc at atmospheric pressure by power modulation technique. Eur Phys J D 50:289–297

    Article  CAS  Google Scholar 

  29. Fey FHAG, Stoffels WW, van der Mullen JAM, van der Sijde B, Schram DC (1991) Instantaneous and delayed responses of line intensities to interruption of the RF power in an argon inductively coupled plasma. Spectrochim Acta B 46:885–900

    Article  Google Scholar 

  30. Kuzmanovic M, Pavlovic MS, Savovic J, Marinkovic M (2003) Temporal responses of spectral line intensities emitted by dc arc plasma with aerosol supply studied by power interruption technique. Spectrochim Acta B 58:239–248

    Article  Google Scholar 

  31. Kuzmanović MM, Savović JJ, Ranković DP, Stoiljković M, Antić-Jovanović A, Pavlović MS, Marinković M (2008) A power interruption technique for investigation of temperature difference in stabilized low current dc arc burning in pure argon on atmospheric pressure. Chin Phys Lett 25:1376–1380

    Article  Google Scholar 

  32. Pavlović B, Vukanović V, Ikonomov N (1971) The effect of the plasma composition on characteristics of the d.c. arc-II: arc in argon and arc in nitrogen with water vapour. Spectrochim Acta B 26:109–115

    Article  Google Scholar 

  33. Vukanović V, Ikonomov N, Pavlović B (1971) The effect of the plasma composition on characteristics of the d.c. arc-I: general discussion of the effect of the chemical reactions. Spectrochim Acta B 26:95–105

    Article  Google Scholar 

  34. Golubovskii YuB, Nekuchaev V, Gorchakov S, Uhrlandt D (2011) Contraction of the positive column of discharges in noble gases. Plasma Sources Sci Technol 20:053002

    Article  Google Scholar 

  35. Timmermans EAH, Jonkers J, Thomas IAJ, Rodero A, Quintero MC, Sola A, Gamero A, van der Mullen JAM (1998) The behaviour of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure. Spectrochim Acta B 53:1553–1566

    Article  Google Scholar 

  36. Yu QS, Yasuda HK (1998) An optical emission study on expanding low-temperature cascade arc plasmas. Plasma Chem Plasma Process 18:461–485

    Article  CAS  Google Scholar 

  37. Murphy AB, Arundelli CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon–nitrogen, and argon–oxygen plasmas. Plasma Chem Plasma Process 14:451–490

    Article  CAS  Google Scholar 

  38. Murphy AB (1996) Modelling and diagnostics of plasma chemical processes in mixed-gas arcs. Pure Appl Chem 68(5):1137–1142

    Article  CAS  Google Scholar 

  39. Murphy AB (1997) Demixing in free-burning arcs. Phys Rev A (Part B) 55:7473–7494

    CAS  Google Scholar 

  40. Kian E-F, Hameed M, James K (2011) Thermodynamic properties of ionized gases at high temperatures. J Energy Resour ASME 133:22011–22016

    Google Scholar 

  41. Timmermans EAH, Thomas IAJ, Jonkers J, Hartgers E, van der Mullen JAM, Schram DC (1998) The influence of molecular gases and analytes on excitation mechanisms in atmospheric microwave sustained argon plasmas. Fresenius J Anal Chem 362:440–446

    Article  CAS  Google Scholar 

  42. Jonkers J, van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J (2003) The role of molecular rare gas ions in plasmas operated at atmospheric pressure. Plasma Sources Sci Technol 12:464–474

    Article  CAS  Google Scholar 

  43. Castaños-Martínez E, Moisan M, Kabouzi Y (2009) Achieving non-contracted and non-filamentary rare-gas tubular discharges at atmospheric pressure. J Phys D Appl Phys 42:012003

    Article  Google Scholar 

  44. Eletskii AV, Smirnov BM (1996) Nonuniform gas discharge plasma. Phys-Usp 39:1137–1156

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education, Science, and Technological Development of the Republic Serbia through the Project No. 172019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Savovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rankovic, D., Kuzmanovic, M., Pavlovic, M.S. et al. Properties of Argon–Nitrogen Atmospheric Pressure DC Arc Plasma. Plasma Chem Plasma Process 35, 1071–1095 (2015). https://doi.org/10.1007/s11090-015-9637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9637-6

Keywords

Navigation