Skip to main content
Log in

Numerical Study of DC Argon Arc with Axial Magnetic Fields

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Numerical simulation of an atmospheric DC arc under an axial magnetic field (AMF) is performed with a model of unifying the plasma and electrodes. In the model the configuration of the cathodic arc attachment is free. Results are given for a 200A argon arc under 0–0.02T AMF. The simulation results indicate that, with the AMF, the cathode arc attachment shrinks towards its tip. That induces many changes of arc configuration and arc parameters, different from the calculation assuming a fixed cathodic arc attachment: as the AMF increases, the plasma temperature nearby the cathode tip increases higher; the low temperature hollow of plasma nearby the anode expands more intensively in both axial and radial direction; the profile of current density on the anode exhibits a bigger concave shape; arc voltage drop increases more; and more power is delivered to the anode. The elements that cause the changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25:1258–1280

    Article  CAS  Google Scholar 

  2. Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Process 19:1–31

    Article  CAS  Google Scholar 

  3. Sansonnens L, Haidar J, Lowke JJ (2000) Prediction of properties of free burning arcs including effects of ambipolar diffusion. J Phys D Appl Phys 33:148–157

    Article  CAS  Google Scholar 

  4. Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30:2033–2042

    Article  CAS  Google Scholar 

  5. Haidar J (1999) Non-equilibrium modeling of transferred arcs. J Phys D Appl Phys 32:263–272

    Article  CAS  Google Scholar 

  6. Cram LE (1983) A Model of the Cathode of a Thermionic Arc. J Phys D Appl Phys 16:1643–1650

    Article  CAS  Google Scholar 

  7. Bini R, Monno M, Boulos MI (2006) Numerical and experimental study of transferred arcs in argon. J Phys D Appl Phys 39:3253–3266

    Article  CAS  Google Scholar 

  8. Haidar J (1998) A theoretical model for gas metal arc welding and gas tungsten arc welding. J Appl Phys 84:3518–3529

    Article  CAS  Google Scholar 

  9. Hsu KC, Pfender E (1983) 2-Temperature modeling of the free-burning, high-intensity arc. J Appl Phys 54:4359–4366

    Article  CAS  Google Scholar 

  10. Baeva M, Kozakov R, Gorchakov S, Uhrlandt D (2012) Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci Technol 21:055027

  11. Li HP, Benilov MS (2007) Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J Phys D Appl Phys 40:2010–2017

    Article  CAS  Google Scholar 

  12. Benilov MS, Benilova LG, Li HP, Wu GQ (2012) Sheath and arc-column voltages in high-pressure arc discharges. J Phys D Appl Phys 45:355201

  13. Goldman K, White ES (1965) The effect of an external axial magnetic field on electric arc. Brit J Appl Phys 16:907

    Article  Google Scholar 

  14. Kang YH, Na SJ (2002) A study on the modeling of magnetic arc deflection and dynamic analysis of arc sensor—a magnetic field applied to a welding arc produced an output signal beneficial for an arc sensor. Weld J 81:8S–13S

    Google Scholar 

  15. Gold RS (1996) Arc lamp with external magnetic means. United States of America Patent 5(589):726

    Google Scholar 

  16. Wang Cheng CT (2014) Axial magnetic field effects on xenon short-arc lamps. Plasma Sci Technol (to be published)

  17. Luo J, Jia CS, Wang YS, Xue J, Wu YX (2001) Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling—I. Property of the arc. Acta Metall Sin 37:212–216

    CAS  Google Scholar 

  18. Luo J, Jia CS, Wang YS, Xue J, Wu YX (2001) Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling—II. Model of the arc. Acta Metall Sin 37:217–220

    CAS  Google Scholar 

  19. Li LC, Xia WD (2008) Effect of an axial magnetic field on a DC argon arc. Chinese Phys B 17:649–654

    Article  CAS  Google Scholar 

  20. Li LC, Bai B, Zhou ZP, Xia WD (2008) Axial magnetic-field effects on an argon arc between pin and plate electrodes at atmospheric pressure. IEEE Trans Plasma Sci 36:1078–1079

    Article  CAS  Google Scholar 

  21. Yin X, Gou J, Zhang J, Sun J (2012) Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields. J Phys D Appl Phys 45:285203

  22. Li LC (2008) Experimental observation and numerical analysis of D.C. arc plasmas dispersed by Magnetism. University of science and technology of China, Hefei

  23. Bai B (2012) The simulation of magnetically dispersed arc plasma coupled with electrode. University of science and technology of China, Hefei

    Google Scholar 

  24. Li LC (2008) Experimental observation and numerical analysis of D.C. arc plasmas dispersed by magnetism. University of science and technology of China, Hefei

  25. Zha J (2013) The experimental study of the magnetically rotationg arc and the dispersed arc plasma. University of Science and Technology of China, Hefei

    Google Scholar 

  26. Gonzalez JJ, Cayla F, Freton P, Teulet P (2009) Two-dimensional self-consistent modelling of the arc/cathode interaction. J Phys D Appl Phys 42:145204

  27. Benilov MS, Cunha MD (2002) Heating of refractory cathodes by high-pressure arc plasmas: I. J Phys D Appl Phys 35:1736–1750

    Article  CAS  Google Scholar 

  28. Benilov MS, Marotta A (1995) A Model of the Cathode Region of Atmospheric-Pressure Arcs. J Phys D Appl Phys 28:1869–1882

    Article  CAS  Google Scholar 

  29. Botticher R, Botticher W (2001) Numerical modelling of a dynamic mode change of arc attachment to cathodes of high-intensity discharge lamps. J Phys D Appl Phys 34:1110–1115

    Article  CAS  Google Scholar 

  30. Botticher R, Botticher W (2000) Numerical modelling of arc attachment to cathodes of high-intensity discharge lamps. J Phys D Appl Phys 33:367–374

    Article  CAS  Google Scholar 

  31. Coulombe S, Meunier JL (2000) Theoretical prediction of non-thermionic arc cathode erosion rate including both vaporization and melting of the surface. Plasma Sources Sci T 9:239–247

    Article  CAS  Google Scholar 

  32. Coulombe S, Meunier JL (1997) Arc-cold cathode interactions: parametric dependence on local pressure. Plasma Sources Sci Technol 6:508–517

    Article  CAS  Google Scholar 

  33. Benilov MS (1998) Nonlinear surface heating of a plane sample and modes of current transfer to hot arc cathodes. Phys Rev E 58:6480–6494

    Article  CAS  Google Scholar 

  34. Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Process 27:359–380

    Article  CAS  Google Scholar 

  35. Menart J, Lin L (1999) Numerical study of a free-burning argon arc with copper contamination from the anode. Plasma Chem Plasma Process 19:153–170

    Article  CAS  Google Scholar 

  36. Blais A, Proulx P, Boulos MI (2003) Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon. J Phys D Appl Phys 36:488–496

    Article  CAS  Google Scholar 

  37. Zhu PY, Lowke JJ, Morrow RHNR (1992) A unified theory of free burning arcs, cathode sheaths and cathodes. J Phys D Appl Phys 25:1221–1230

    Article  CAS  Google Scholar 

  38. Simonin O, Delalondre C, Viollet PL (1992) Modeling in thermal plasma and electric-arc column. Pure Appl Chem 64:623–628

    Article  Google Scholar 

  39. Lowke JJ, Kovitya P, Schmidt HP (1992) Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys 25:1600–1606

    Article  CAS  Google Scholar 

  40. Zaehr J, Fuessel U, Hertel M, Lohse M, Sende M, Schnick M (2012) Numerical and experimental studies of the influence of process gases in TIC welding. Weld World 56:85–92

    Article  Google Scholar 

  41. Schnick M, Dreher M, Zschetzsche J, Fuessel U, Spille-Kohoff A (2012) Visualization and optimization of shielding gas flows in arc welding. Weld World 56:54–61

    Article  CAS  Google Scholar 

  42. Schnick M, Fussel U, Spille-Kohoff A (2010) Numerical investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (Paw). Weld World 54:R87–R96

    Article  CAS  Google Scholar 

  43. Bai B, Zha J, Zhang XM, Wang C, Xia WD (2012) Simulation of magnetically dispersed arc plasma. Plasma Sci Technol 14:118–121

    Article  CAS  Google Scholar 

  44. Pfender E (1980) Energy-transport in thermal plasmas. Pure Appl Chem 52:1773–1800

    Article  CAS  Google Scholar 

  45. Xia WD, Li LC, Zhao YH, Ma Q, Du BH, Chen Q, Cheng L (2006) Dynamics of large-scale magnetically rotating arc plasmas. Appl Phys Lett 88:211501

  46. Yakhot V, Orszag SA (1986) Renormalization-Group Analysis of Turbulence. Phys Rev Lett 57:1722–1724

    Article  Google Scholar 

  47. Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids a-Fluid 4:1510–1520

    Article  CAS  Google Scholar 

  48. Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54:1293–1301

    Article  CAS  Google Scholar 

  49. Murphy AB, Arundell CJ (1994) Transport-coefficients of argon, nitrogen, oxygen, argon–nitrogen, and argon–oxygen plasmas. Plasma Chem Plasma Process 14:451–490

    Article  CAS  Google Scholar 

  50. Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by The National Natural Science Foundation of China: NSFC11035005, NSFC50876101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Xiaoning, Z., Bai, B. et al. Numerical Study of DC Argon Arc with Axial Magnetic Fields. Plasma Chem Plasma Process 35, 61–74 (2015). https://doi.org/10.1007/s11090-014-9592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9592-7

Keywords

Navigation