Skip to main content
Log in

Study of the physical discharge properties of a Ar/O2 DC plasma jet

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from \( {\text{NO }}\upgamma \left( {{\text{A}}^{2} {{\Sigma }}^{ + } \to {\text{X}}^{2} {{\Pi }}_{\text{r}} } \right) \) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R M Sankaran and K P Giapis Appl. Phys. Lett. 79 593 (2001)

    Article  ADS  Google Scholar 

  2. T Ito and K Terashima Thin Solid Films 390 234 (2001)

    Article  ADS  Google Scholar 

  3. T Ito, T Izaki and K Terashima Thin Solid Films 386 300 (2001)

    Article  ADS  Google Scholar 

  4. R M Sankaran and K P Giapis J. Appl. Phys. 92 2406 (2002)

    Article  ADS  Google Scholar 

  5. Y Shimizu, T Sasaki, T Ito, K Terashima and N Koshizaki J. Phys. D Appl. Phys. 36 2940 (2003)

    Article  ADS  Google Scholar 

  6. T Kikuchi, Y Hasegawa and H Shirai J. Phys. D Appl. Phys. 37 1537 (2004)

    Article  ADS  Google Scholar 

  7. T Ichiki, R Taura and Y Horiike J. Appl. Phys. 95 35 (2004)

    Article  ADS  Google Scholar 

  8. Y Shimizu, T Sasaki, C Liang, A C Bose, T Ito, K Terashima and N Koshizaki Chem. Vap. Depos. 11 244 (2005)

    Article  Google Scholar 

  9. Y Shimizu, T Sasaki, A C Bose, K Terashima and N Koshizaki Surf. Coat. Technol. 200 4251 (2006)

    Article  Google Scholar 

  10. H Shirai, T Kobayashi and Y Hasegawa Appl. Phys. Lett. 87 143112 (2005)

    Google Scholar 

  11. Y Shimizu, A C Bose, T Sasaki, D Mariotti, K Kirihara, T Kodaira, K Terashima and N Koshizaki Trans. Mater. Res. Soc. Jpn. 31 463 (2006)

    Google Scholar 

  12. M Laroussi Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology (Cambridge: Cambridge University) (2012)

  13. S Salehi, A Shokri, M Reza Khani, M Bigdeli and B Shokri Biointerphases 10 029504 (2015)

    Article  Google Scholar 

  14. T G Klampfl, T Shimizu, S Koch, M Balden, S Gemein, Y F Li, A Mitra, J L Zimmermann, J Gebel, G E Morfill and H U Schmidt Plasma Processes Polym. 11 974 (2014)

    Article  Google Scholar 

  15. P Babington, K Rajjoub, J Canady, A Siu, M Keidar and J H Sherman Biointerphases 10 029403 (2015)

    Article  Google Scholar 

  16. Y Wu, Y Liang, K Wei, W Li, M Yao and J Zhang Environ. Sci. Technol. 48 2901 (2014)

    Article  Google Scholar 

  17. M Habib, T L Hottel and L Hong Clin. Plasma Med. 2 17 (2014)

    Article  ADS  Google Scholar 

  18. N NathMisra, K M Keener, P Bourke, J P Mosnier and P J Cullen J. Biosci. Bioeng. 118 177 (2014)

    Article  Google Scholar 

  19. X Lu, M Laroussi and V Puech Plasma Sources Sci. Technol. 21 034005 (2012)

    ADS  Google Scholar 

  20. K Kutasi, V Guerra and P A Sa Plasma Sources Sci. Technol. 20 035006 (2011)

    Google Scholar 

  21. K Kutasi, V Guerra and P A Sa J. Phys. D Appl. Phys. 43 175201 (2010)

    Article  ADS  Google Scholar 

  22. J T Gudmundsson, T Kimura and M A Lieberman Plasma Sources Sci. Technol. 8 22 (1999)

    Google Scholar 

  23. J T Gudmundsson and E G Thorsteinsson Plasma Sources Sci. Technol. 16 399 (2007)

    Article  ADS  Google Scholar 

  24. L Moravský, M Klas, S Matejcik and E Machova 22nd Annual Conference on Doctoral Students on Plasma Physics (2013)

    Google Scholar 

  25. M K Khalaf, I R Agool and S H Abd Muslim Int. J. Appl. Inn. Eng. Manag. 3 113 (2014)

    Google Scholar 

  26. S Ono, T Suganuma and Y Suzuki 19th International Symposium on Plasma Chemistry (2009)

  27. K Wagatsuma and H Kichinosuke Anal. Chim. Acta 306 193 (1995)

    Article  Google Scholar 

  28. J Ying, R Chunsheng, Y Liang, Z Jialiang and W Dezhen Plasma Sci. Technol. 15 1203 (2013)

    Google Scholar 

  29. E Stoffels, A J Flikweert, W W Stoffels and G W Kroesen Plasma Sources Sci. Technol. 11 383 (2002)

    Google Scholar 

  30. C O Laux Ph.D. Thesis (Stanford University, USA) (1993)

  31. C O Laux, T G Spence, C H Kruger and R N Zare Plasma Sources Sci. Technol. 12 125 (2003)

    Google Scholar 

  32. M Jasinski, J Mizeraczyk and Z Zakrzewski 15th International Conference on Gas Discharges and Their Applications (2004)

  33. S N Siadati, F Sohbatzadeh and V Omran Phys. Plasmas 24 6 (2017)

    Google Scholar 

  34. C Tendero, C Tixier, P Tristant, J Desmaison and P Leprince Spectrochim. Acta B 61 2 (2006)

    Article  Google Scholar 

  35. M D Calzada, A Rodero, A Sola and A Gamero J. Phys. Soc. Jpn. 65 948 (1996)

    Article  ADS  Google Scholar 

  36. T Fujimoto and R W P McWhirter Phys. Rev. A 42 6588 (1990)

    Article  ADS  Google Scholar 

  37. Z Machala, M Janda, K Hensel, I Jedlovský, L Leštinská, V Foltin, V Martišovitš and M Morvova J. Mol. Spectrosc. 243 194 (2007)

    Article  ADS  Google Scholar 

  38. T Sakamoto, H Matsuura and H Akatsuka J. Appl. Phys. 2 023307 (2007)

    Article  ADS  Google Scholar 

  39. D Wang, D Zhao, K Feng, X Zhang, D Liu and S Yang Appl. Phys. Lett. 16 161501 (2011)

    Google Scholar 

  40. Z Machala, M Morvova, E Marode and I Morva J. Phys. D Appl. Phys. 33 3198 (2000)

    Article  ADS  Google Scholar 

  41. L Schmiedt, A Kaňka and V Hrachová 22nd Annual Conference on Doctoral Students on Plasma Physics (2008)

    Google Scholar 

  42. N Haraki, S Nakano, S Ono and S Teii Electr. Eng. Jpn. 149 14 (2004)

    Article  Google Scholar 

  43. G Herzberg Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules (New York: Van Nostrand) (1950)

  44. G Gardet, G Moulard, M Courbon, F Rogemond and M Druetta Meas. Sci. Technol. 11 333(2000)

    ADS  Google Scholar 

  45. D E Shemansky and A L Broadfoot J. Quant. Spectrosc. Radiat. Transf. 10 1385 (1971)

    Article  ADS  Google Scholar 

  46. M D Calzada, M Moisan, A Gamero and A Sola J. Appl. Phys. 80 46 (1996)

    Article  ADS  Google Scholar 

  47. D Staack, B Farouk, A Gutsol and A Fridman Plasma Sources Sci. Technol. 14 700 (2005)

    Google Scholar 

  48. S Pandhija and A K Rai Appl. Phys. B 94 545 (2009)

    Article  ADS  Google Scholar 

  49. National Institute of Standards and Technology 1979–2008 NIST: Atomic Spectra Data Base (Gaithersburg, MD: NIST Physics Laboratory) and http://physics.nist.gov/PhysRefData/ASD

  50. H R Griem Plasma Spectroscopy (New York: McGraw-Hill) (1964)

  51. J Torres, M J van de Sande, J van der Mullen, A Gamero and A Sola Spectrochim. Acta B 61 58 (2006)

    Article  Google Scholar 

  52. R Eisberg and R Resnick Quantum Physics of Atoms, Molecule, Solids, Nuclei and Particles (Rio de Janeiro: Elsevier) (1979)

    Google Scholar 

  53. A Y Nikiforov, C Leys, M A Gonzalez and J L Walsh Plasma Sources Sci. Technol. 24 034001 (2015)

    Google Scholar 

  54. M Qian, C Ren, D Wang, J Zhang and G Wei J. Appl. Phys. 107 063303 (2010)

    Article  ADS  Google Scholar 

  55. S G Belostotskiy, T Ouk, V M Donnelly, D J Economou and N Sadeghi J. Appl. Phys. 107 053305 (2010)

    Article  ADS  Google Scholar 

  56. F J Mehr and M A Biondi Phys. Rev. 176 322 (1968)

    Article  ADS  Google Scholar 

  57. M A Gigosos and V Cardenoso J. Phys. B 29 4795 (1996)

    Article  ADS  Google Scholar 

  58. M K Khalaf Ph.D. Thesis (University of Baghdad, Iraq) (2010)

  59. M Imran, N U Rehman, A W Khan, M Zaka-ul-Islam, M Shafiq and M Zakaullah Radiat. Phys. Chem. 123 115 (2016)

    ADS  Google Scholar 

  60. M A Lieberman and A J Lichtenberg Principles of Plasma Discharge and Materials Processing (New York: Wiley) (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ganjovi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, A., Ganjovi, A., Mirzaei, I. et al. Study of the physical discharge properties of a Ar/O2 DC plasma jet. Indian J Phys 92, 1177–1186 (2018). https://doi.org/10.1007/s12648-018-1197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1197-1

Keywords

PACS Nos.

Navigation