Skip to main content

Advertisement

Log in

Molecular alterations of bone quality in sequesters of bisphosphonates-related osteonecrosis of the jaws

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Compared to healthy bone, the intrinsic bone materials properties in the pre-existing lamellar bone are altered in jaw bone sequesters of bisphosphonates (BP)-related osteonecrosis.

Introduction

The aim of this study was to evaluate the human jaw bone quality, especially intrinsic bone material properties among sequesters of osteonecrosis of the jaw (ONJ) induced by BP.

Methods

Bone sequesters were obtained from 24 patients suffering from ONJ following a BP treatment. Within BP-exposed bone samples, benign-BP and malignant-BP groups were distinguished in relation to the underlying disease: osteoporosis and bone metastases or multiple myeloma, respectively. Healthy cadaveric cortical jaw bone samples were used as controls. The physicochemical parameters of bone samples — mineral/organic ratio, relative proteoglycan content, crystallinity, monohydrogen phosphate content, and type-B carbonate substitution — were evaluated by Raman microspectroscopy. Representative Raman spectral features of bones control and BP-exposed bone sequesters were identified with the Partial-Least-Square Discriminant Analysis (PLS-DA).

Results

BP-exposed bone sequesters are characterized by a significant increase of mineral to organic ratio (+12 %) and a significant decrease of relative proteoglycan content (−35 %), thus regulating initial collagen matrix mineral deposition. Structural changes on mineral components are revealed by a significant decrease of both crystallinity (−2 %) and mineral maturation (−41 %) in the BP-exposed bone sequesters compared to healthy bones. These modifications were also observed distinctly in both benign-BP and malignant-BP groups. In addition, a shift of the phosphate ν1 band was highlighted by PLS-DA between bones control and BP-exposed bone sequesters, revealing a disruption of the apatitic phosphate environment in the jaw bone sequesters.

Conclusions

The present data show that jaw bone quality can be altered with an overmineralization and ultrastructural modifications of apatitic mineral in bone sequesters of BP-related ONJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALN:

Alendronate

BP:

Bisphosphonate

CLO:

Clodronate

CTL:

Control

GAG:

Glycosaminoglycan

IBN:

Ibandronate

ONJ:

Osteonecrosis of the jaw

PAM:

Pamidronate

PG:

Proteoglycan

PLS-DA:

Partial-Least-Square Discriminant Analysis

ZOL:

Zoledronate

References

  1. Recker RR, Armas L (2011) The effect of antiresorptives on bone quality. Clin Orthop Relat Res 469:2207–2214

    Article  PubMed  Google Scholar 

  2. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bala Y, Farlay D, Chapurlat RD, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655

    Article  CAS  PubMed  Google Scholar 

  4. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18

    Article  CAS  PubMed  Google Scholar 

  5. Durchschlag E, Paschalis EP, Zoehrer R, Roschger FP, Recker R, Phipps R, Klaushofer K (2006) Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res 21:1581–1590

    Article  CAS  PubMed  Google Scholar 

  6. Bala Y, Kohles J, Recker RR, Boivin G (2013) Oral ibandronate in postmenopausal osteoporotic women alters micromechanical properties independently of changes in mineralization. Calcif Tissue Int 92:6–14

    Article  CAS  PubMed  Google Scholar 

  7. Cremers S, Papapoulos S (2011) Pharmacology of bisphosphonates. Bone 49:42–49

    Article  CAS  PubMed  Google Scholar 

  8. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DJ, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  CAS  PubMed  Google Scholar 

  9. Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354

    Article  CAS  PubMed  Google Scholar 

  10. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19:329–337

    Article  CAS  PubMed  Google Scholar 

  12. Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41:318–320

    Article  CAS  PubMed  Google Scholar 

  13. Allen MR, Kubek DJ, Burr DB (2010) Cancer treatment dosing regimens of zoledronic acid result in near-complete suppression of mandible intracortical bone remodeling in beagle dogs. J Bone Miner Res 25:98–105

    Article  CAS  PubMed  Google Scholar 

  14. Huja SS, Mason A, Fenell CE, Mo X, Hueni S, D'Atri AM, Fernandez SA (2011) Effects of short-term zoledronic acid treatment on bone remodeling and healing at surgical sites in the maxilla and mandible of aged dogs. J Oral Maxillofac Surg 69:418–427

    Article  PubMed  Google Scholar 

  15. Allen MR, Kubek DJ, Burr DB, Ruggiero SL, Chu TMG (2011) Compromised osseous healing of dental extraction sites in zoledronic acid-treated dogs. Osteoporos Int 22:693–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hokugo A, Sun S, Park S, McKenna CE, Nishimura I (2013) Equilibrium-dependent bisphosphonate interaction with crystalline bone mineral explains anti-resorptive pharmacokinetics and prevalence of osteonecrosis of the jaw in rats. Bone 53:59–68

    Article  CAS  PubMed  Google Scholar 

  17. Hellstein JW, Adler RA, Edwards B et al (2011) Managing the care of patients receiving antiresorptive therapy for prevention and treatment of osteoporosis: executive summary of recommendations from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 142:1243–1251

    Article  CAS  PubMed  Google Scholar 

  18. Almazrooa SA, Woo SB (2009) Bisphosphonate and nonbisphosphonate-associated osteonecrosis of the jaw: a review. J Am Dent Assoc 140:864–875

    Article  CAS  PubMed  Google Scholar 

  19. Reid IR (2009) Osteonecrosis of the jaw: who gets it, and why? Bone 44:4–10

    Article  CAS  PubMed  Google Scholar 

  20. Allen MR, Ruggiero SL (2009) Higher bone matrix density exist in only a subset of patients with bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg 67:1373–1377

    Article  PubMed  Google Scholar 

  21. Takaishi Y, Ikeo T, Nakajima M, Miki T, Fujita T (2010) A pilot case–control study on the alveolar bone density measurement in risk assessment for bisphosphonate-related osteonecrosis of the jaw. Osteoporosis Int 21:815–825

    Article  CAS  Google Scholar 

  22. Bedogni A, Blandamura S, Lokmic Z et al (2008) Bisphosphonate-associated jawbone osteonecrosis: a correlation between imaging techniques and histopathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:358–364

    Article  PubMed  Google Scholar 

  23. Favia G, Pilolli GP, Maiorano E (2009) Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaw: an analysis of 31 cases with confocal laser scanning microscopy. Bone 45:406–413

    Article  CAS  PubMed  Google Scholar 

  24. Vieillard MH, Maes JM, Penel G, Facon T, Magro L, Bonneterre J, Cortet B (2008) Thirteen cases of jaw osteonecrosis in patients on bisphosphonate therapy. Joint Bone Spine 75:34–40

    Article  PubMed  Google Scholar 

  25. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575

    Article  PubMed  Google Scholar 

  26. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  PubMed  Google Scholar 

  27. Falgayrac G, Facq S, Leroy G, Cortet B, Penel G (2010) New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Appl Spectrosc 64:775–780

    Article  CAS  PubMed  Google Scholar 

  28. Uthgennant BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ (2007) Skeletal self-repair: stress healing by rapid formation and densification of woven bone. J Bone Miner Res 22:1548–1556

    Article  Google Scholar 

  29. Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904

    Article  CAS  PubMed  Google Scholar 

  30. Waddington RJ, Roberts HC, Sugars RV, Schönherr E (2003) Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater 6:12–21

    CAS  PubMed  Google Scholar 

  31. Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907

    Article  PubMed  Google Scholar 

  32. Donnelly E, Boskey A, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed  Google Scholar 

  33. Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS (2011) Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech 44:297–303

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lennart E, Johansson E, Nouna KW, Trygg J, Wikstrom C, Svante W (2006) Multi- and megavariate data analysis basic principles and applications (Part I). Umetrics AB, Umea

    Google Scholar 

  35. Bala Y, Farlay D, Boivin G (2012) Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int [Epub ahead of print].

  36. Wen D, Qing L, Harrison G, Golub E, Akintoye SO (2011) Anatomic site variability in rat skeletal uptake and desorption of fluorescently labeled bisphosphonate. Oral Dis 17:427–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  PubMed  Google Scholar 

  38. Reszka AA, Rodan GA (2003) Mechanism of action of bisphosphonates. Curr Osteoporos Rep 1:45–52

    Article  PubMed  Google Scholar 

  39. Leu CT, Luegmayr E, Freedman LP, Rodan GA, Reszka AA (2006) Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. Bone 38:628–636

    Article  CAS  PubMed  Google Scholar 

  40. Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, Paschalis EP (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res 27:995–1003

    Article  CAS  PubMed  Google Scholar 

  41. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834

    Article  CAS  PubMed  Google Scholar 

  42. Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:1236–1243

    Article  CAS  PubMed  Google Scholar 

  43. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle x-ray scattering. Calcif Tissue Int 79:354–359

    Article  CAS  PubMed  Google Scholar 

  44. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lakshmi RJ, Alexander M, Kurien J, Mahato KK, Kartha VB (2003) Osteoradionecrosis (ORN) of the mandible: a laser Raman spectroscopic study. Appl Spectrosc 57:1100–1116

    Article  CAS  PubMed  Google Scholar 

  46. Cremers S, Farooki A (2011) Biochemical markers of bone turnover in osteonecrosis of the jaw in patients with osteoporosis and advanced cancer involving the bone. Ann N Y Acad Sci 1218:80–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Anatomy Laboratory of Medical School, Lille, France, for supplying bone control samples. We also thank O. Devos of Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR 8516 for his help on the PLS-DA analyses. We thanks the Institut Français pour la Recherche Odontologique (IFRO) and the Société Française de Chirurgie Orale (SFCO) for their financial support.

Conflicts of interest

BC: occasional interventions: consultancy or speaker fees from Amgen, Daiichi-Sankyo, Ferring, GSK, Lilly, MSD, Medtronic, Novartis, and Servier. Indirect interests: financial support for research programs or investigator fees from Amgen, Lilly, MSD, Novartis, and Roche. MHV: occasional interventions: consultancy or speaker fees from Amgen, Medtronic and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Olejnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olejnik, C., Falgayrac, G., During, A. et al. Molecular alterations of bone quality in sequesters of bisphosphonates-related osteonecrosis of the jaws. Osteoporos Int 25, 747–756 (2014). https://doi.org/10.1007/s00198-013-2514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2514-3

Keywords

Navigation