Skip to main content

Advertisement

Log in

The Effect of Antiresorptives on Bone Quality

  • Symposium: Bone Quality: From Bench to Bedside
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments.

Questions/purposes

We examined the antifracture benefit of antiresorptives deriving from bone quality changes.

Methods

We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here.

Results

The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality.

Conclusions

Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkus O, Rimnac CM. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth. J Biomech. 2001;34:757–764.

    Article  PubMed  CAS  Google Scholar 

  2. Allen MR, Burr DB. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone. 2010 October 16 [Epub ahead of print].

  3. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 2008;19:329–337.

    Article  PubMed  CAS  Google Scholar 

  4. Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB. Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology. 2007;148:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  5. Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–879.

    Article  PubMed  CAS  Google Scholar 

  6. Baron R, Vignery A, Neff L, Silvergate A, Santa Maria A. Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR, ed. Bone Histomorphometry: Techniques and Interpretation. Boca Raton, FL: CRC Press; 1983:13–36.

    Google Scholar 

  7. Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, Kornitzer M, McNabb MA, Wenger NK; Raloxifene Use for the Heart (RUTH) Trial Investigators. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006;355:125–137.

    Article  PubMed  CAS  Google Scholar 

  8. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998;23:275–281.

    Article  PubMed  CAS  Google Scholar 

  9. Black DM, Kelly MP, Genant HK, Palermo L, Eastell R, Bucci-Rechtweg C, Cauley J, Leung PC, Boonen S, Santora A, de Papp A, Bauer DC; Fracture Intervention Trial and HORIZON Pivotal Fracture Trial Steering Committees. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010;362:1761–1771.

    Article  PubMed  CAS  Google Scholar 

  10. Boivin G, Meunier PJ. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int. 2002;70:503–511.

    Article  PubMed  CAS  Google Scholar 

  11. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27:687–694.

    Article  PubMed  CAS  Google Scholar 

  12. Bone HG, Greenspan SL, McKeever C, Bell N, Davidson M, Downs RW, Emkey R, Meunier PJ, Miller SS, Mulloy AL, Recker RR, Weiss SR, Heyden N, Musliner T, Suryawanshi S, Yates AJ, Lombardi A. Alendronate and estrogen effects in postmenopausal women with low bone mineral density. J Endocrinol Metab. 2000;85:720–726.

    Article  CAS  Google Scholar 

  13. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2006;16:2031–2038.

    Article  Google Scholar 

  14. Brennan TC, Rizzoli R, Ammann P. Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res. 2009;24:800–808.

    Article  PubMed  CAS  Google Scholar 

  15. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, San Martin J, Bone HG. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24:153-161.

    Article  PubMed  CAS  Google Scholar 

  16. Burr D. Microdamage and bone strength. Osteoporos Int. 2003;14:S67–S72.

    Article  PubMed  Google Scholar 

  17. Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30:2–4.

    Article  PubMed  CAS  Google Scholar 

  18. Burr DB, Allen MR. Low bone turnover and microdamage: how and where to assess it? J Bone Miner Res. 2008;23:1150–1151.

    Article  PubMed  Google Scholar 

  19. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  PubMed  CAS  Google Scholar 

  20. Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21:939–944.

    Article  PubMed  CAS  Google Scholar 

  21. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen A, Liu S, Stein EM, McMahon DJ, Rogers HF, LeMaster J, Recker RR, Lappe JM, Guo XE, Shane E. Bone microarchitecture and stiffness in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab. 2009;94:4351–4360.

    Article  PubMed  CAS  Google Scholar 

  23. Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone. 2006;39:434–442.

    Article  PubMed  CAS  Google Scholar 

  24. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112:281–289.

    Article  PubMed  CAS  Google Scholar 

  25. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7:178–208.

    PubMed  CAS  Google Scholar 

  26. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C; FREEDOM trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–765.

    Article  PubMed  CAS  Google Scholar 

  27. Delmas PD, Ensrud KE, Adachi JD, Harper KD, Sarkar S, Gennari C, Reginster JY, Pols HA, Recker RR, Harris ST, Wu W, Genant HK, Black DM, Eastell R. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002;87:3609–3617.

    Article  PubMed  CAS  Google Scholar 

  28. Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nano-indentation. J Orthop Res. 2002;20:806–810.

    Article  PubMed  CAS  Google Scholar 

  29. Feher A, Koivunemi A, Koivunemi M, Fuchs RK, Burr DB, Phipps RJ, Reinwald S, Allen MR. Bisphosphonates do not inhibit periosteal bone formation in estrogen deficient animals and allow enhanced bone modeling in response to mechanical loading. Bone. 2010;46:203–207.

    Article  PubMed  CAS  Google Scholar 

  30. Frost HM. Intermediary Organization of the Skeleton. Boca Raton, FL: CRC Press; 1986.

    Google Scholar 

  31. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R; ABCSG-12 Trial Investigators. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009;360:679–691.

    Article  PubMed  CAS  Google Scholar 

  32. Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, Peltonen L, Somer H, Hirose T, Dallapiccola B, de Paepe A, Swoboda W, Zabel B, Superti-Furga A, Steinmann B, Brunner HG, Jans A, Boles RG, Adkins W, van den Boogaard MJ, Olsen BR, Warman ML. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996;59:146–151.

    PubMed  CAS  Google Scholar 

  33. Greenspan SL, Emkey RD, Bone HG 3rd, Weiss SR, Bell NH, Downs RW Jr, McKeever C, Miller SS, Davidson M, Bolognese MA, Mulloy AL, Heyden N, Wu M, Kaur A, Lombardi A. Significant differential effects of alendronate, estrogen, or combination therapy on the rate of bone loss after discontinuation of treatment of postmenopausal osteoporosis. Ann Intern Med. 2002;137:875–883.

    PubMed  CAS  Google Scholar 

  34. Heaney RP. How does bone support calcium homeostasis? Bone. 2003;33:264–268.

    Article  PubMed  CAS  Google Scholar 

  35. Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med. 1978;92:964–970.

    PubMed  CAS  Google Scholar 

  36. Heaney RP, Yates AJ, Santora II AC. Bisphosphonate effects and the bone remodeling transient. J Bone Miner Res. 1997;12:1143–1151.

    Article  PubMed  CAS  Google Scholar 

  37. Heino TJ, Kurata K, Higaki H, Vaananen HK. Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol Health Care. 2009;17:49–56.

    PubMed  Google Scholar 

  38. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47:766–772.

    Article  PubMed  CAS  Google Scholar 

  39. Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation? Bone. 2000;27:13–20.

    Article  PubMed  CAS  Google Scholar 

  40. Jaworski ZF, Liskova-Kiar M, Uhthoff HK. Effect of long-term immobilisation on the pattern of bone loss in older dogs. J Bone Joint Surg Br. 1980;62:104–110.

    PubMed  Google Scholar 

  41. Keshawarz NM, Recker RR. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res. 1984;5:223–228.

    Article  PubMed  CAS  Google Scholar 

  42. Laib A, Newitt DC, Lu Y, Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int. 2002;13:130–136.

    Article  PubMed  CAS  Google Scholar 

  43. Lasseter KC, Porras AG, Denker A, Santhanagopal A, Daifotis A. Pharmacokinetic considerations in determining the terminal elimination half-lives of bisphosphonates. Clin Drug Invest. 2005;25:107–114.

    Article  CAS  Google Scholar 

  44. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358:1304–1306.

    Article  PubMed  CAS  Google Scholar 

  45. Liberman UA, Weiss SR, Broll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M, Seeman E, Recker RR, Capizzi T, Santora AC 2nd, Lombardi A, Shah RV, Hirsch LJ, Karpf DB; Alendronate Phase III Osteoporosis Treatment Study Group. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med. 1995;333:1437–1443.

    Article  PubMed  CAS  Google Scholar 

  46. Masarachia P, Weinreb M, Balena R, Rodan GA. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone. 1996;19:281–290.

    Article  PubMed  CAS  Google Scholar 

  47. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–620.

    Article  PubMed  CAS  Google Scholar 

  48. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–531.

    Article  PubMed  CAS  Google Scholar 

  49. Melhus H, Riserus U, Warensjo E, Wernroth L, Jensevik K, Berglund L, Vessby B, Michaelsson K. A high activity index of stearoyl-CoA desaturase is associated with increased risk of fracture in men. Osteoporos Int. 2008;19:929–934.

    Article  PubMed  CAS  Google Scholar 

  50. Melton LJ. Epidemiology of fractures. In; Riggs BL, Melton LJ, (eds) Osteoporosis: Etiology, Diagnosis and Management. 2nd ed. Philadelphia PA: Lippincott-Raven Press; 1995:225–247.

    Google Scholar 

  51. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–109.

    Article  PubMed  CAS  Google Scholar 

  52. Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone. 1997;21:521–526.

    Article  PubMed  CAS  Google Scholar 

  53. Mulcahy LE, Taylor D, Lee TC, Duffy GP. RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone. 2011;48:182–188.

    Article  PubMed  CAS  Google Scholar 

  54. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–1301.

    Article  PubMed  CAS  Google Scholar 

  55. Papapoulos SE, Frolich M. Prediction of the outcome of treatment of Paget’s disease of bone with bisphosphonates from short-term changes in the rate of bone resorption. J Clin Endocrinol Metab. 1996;81:3993–3997.

    Article  PubMed  CAS  Google Scholar 

  56. Rauch F, Plotkin H, Travers R, Zeitlin L, Glorieux FH. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. 2003;88:986–992.

    Article  PubMed  CAS  Google Scholar 

  57. Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19:1628–1633.

    Article  PubMed  Google Scholar 

  58. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone. 2009;44:113–119.

    Article  PubMed  CAS  Google Scholar 

  59. Rubin CT, Lanyon LE. Dynamic strain similarities in vertebrates: an alternative to allometric limb bone scaling. J Theor Biol. 1984;107:321–327.

    Article  PubMed  CAS  Google Scholar 

  60. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:733–759.

    Article  PubMed  CAS  Google Scholar 

  61. Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K. Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int. 2008;19:1343–1354.

    Article  PubMed  CAS  Google Scholar 

  62. Saville PD, Heaney RP, Recker RR. Radiogrammetry at four bone sites in normal middle-aged women. Clin Orthop Relat Res. 1976;114:307–315.

    PubMed  Google Scholar 

  63. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–525.

    Article  PubMed  CAS  Google Scholar 

  64. Selker F, Carter DR. Scaling of long bone fracture strength with animal mass. J Biomech. 1989;22:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  65. Stepan JJ, Burr DB, Pavo I, Sipos A, Michalska D, Li J, Fahrleitner-Pammer A, Petto H, Westmore M, Michalsky D, Sato M, Dobnig H. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone. 2007;41:378–385.

    Article  PubMed  Google Scholar 

  66. Tang SY, Zeenath U, Vashishth D. Effects on non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40:1144–1151.

    Article  PubMed  CAS  Google Scholar 

  67. Verborgt O, Gibson G, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–67.

    Article  PubMed  CAS  Google Scholar 

  68. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  69. Yeni YN, Fyhrie DP. Fatigue damage—fracture mechanics interaction in cortical bone. Bone. 2002;30:509–514.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Recker MD.

Additional information

Robert R. Recker is a paid consultant for Merck & Co, Inc (Whitehouse Station, NJ); Eli Lilly and Co (Indianapolis, IN); Pfizer, Inc (Princeton, NJ); The Proctor & Gamble Co (Cincinnati, OH); Amgen Inc (Thousand Oaks, CA); Roche USA (Indianapolis, IN); GlaxoSmithKline, Inc (Research Triangle Park, NC); and Novartis Corp (East Hanover, NJ) and has received grant/research support from Merck & Co, Inc; Eli Lilly and Co; Wyeth (Madison, NJ); The Proctor & Gamble Co; Amgen Inc; Roche USA; GlaxoSmithKline, Inc; Novartis Corp; and Sanofi-Aventis US (Bridgewater, NJ) through grants to his institution.

About this article

Cite this article

Recker, R.R., Armas, L. The Effect of Antiresorptives on Bone Quality. Clin Orthop Relat Res 469, 2207–2214 (2011). https://doi.org/10.1007/s11999-011-1909-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1909-8

Keywords

Navigation