Skip to main content

An Overview of Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture

  • Chapter
  • First Online:
Crop Production for Agricultural Improvement

Abstract

Soil bacteria beneficial to plant growth usually referred to as plant growth promoting rhizobacteria (PGPR), are capable of promoting plant growth by colonizing the plant root. The mechanisms of PGPR-mediated enhancement of crop growth includes (i) a symbiotic and associative nitrogen fixation; (ii) solubilization and mineralization of other nutrients; (iii) production of hormones e.g. auxin i.e. indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid and cytokinins; (iv) production of ACC-deaminase to reduce the level of ethylene in crop roots thus enhancing root length and density; (v) ability to produce antagonistic siderophores, ß-1-3-glucanase, chitinases, antibiotics, fluorescent pigment and cyanide against pathogens and (vi) enhanced resistance to drought and oxidative stresses by producing water soluble vitamins niacin, thiamine, riboflavin, biotin and pantothenic acid. Increased crop production through biocontrol is an indirect mechanism of PGPR that results in suppression of soil born deleterious microorganisms. Biocontrol mechanisms involved in pathogen suppression by PGPR include substrate competition, antibiotic production, and induced systemic resistance in the host. PGPR can play an essential role in helping plants to establish and grow in nutrient deficient conditions. Their use in agriculture can favour a reduction in agro-chemical use and support ecofriendly crop production. Trials with rhizosphere-associated plant growth-promoting P-solubilizing and N2-fixing microorganisms indicated yield increase in rice, wheat, sugar cane, maize, sugar beet, legumes, canola, vegetables and conifer species. A range of beneficial bacteria including strains of Herbaspirillum, Azospirillum and Burkholderia are closely associated with rhizosphere of rice crops. Common bacteria found in the maize rhizosphere are Azospirillum sp., Klebsiella sp., Enterobacter sp., Rahnella aquatilis, Herbaspirillum seropedicae, Paenibacillus azotofixans, and Bacillus circulans. Similarly, strains of Azotobacter, Azorhizobium, Azospirillum, Herbaspirillum, Bacillus and Klebsiella can supplement the use of urea-N in wheat production either by BNF or growth promotion. The commonly present PGPR in sugarcane plants are Azospirillum brasilense, Azospirillum lipoferum, Azospirillum amazonense, Acetobacter diazotrophicus, Bacillus tropicalis, Bacillus borstelensis, Herbaspirillum rubrisubalbicans and Herbaspirillum seropedicae. Symbiotic N2-fixing bacteria collectively known as Rhizobia are currently classified into six genera; Rhizobium, Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium and Sinorhizobium and 91 species. Their inoculation may increase nodulation and N2-fixation in legumes. All these Rhizobiumn spp. can minimize chemical N fertilizers by BNF, but only if conditions for expression of N2-fixing activity and subsequent transfer of N to plants are favourable. In this Chapter, PGPR role has been discussed in the process of crop growth promotion, their mechanisms of action and their importance in crop production on sustainable basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Angus JF (2001) Nitrogen supply and demand in Australian agriculture. Aust J Exp Agric 41:277–288

    Article  CAS  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Hassan M (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45(2):135–143

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere. Microbial production and function. Adv Agron 62:46–51

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillums seropidicae. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banerjee MR, Yasmin L (2002) Sulfur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production. Proceeding of Agroenviron, 26–29 Oct 2002, Cairo, Egypt, pp 1–7

    Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, Inc., New York

    Google Scholar 

  • Bent E, Breuil C, Enebak S, Chanway CP (2002) Surface colonization of lodgepole pine (Pinus contorta var lati folia [Dougl. Engelm.]) roots by Pseudomonas fluorescens and Paenibacillus polymyxa under gnotobiotic conditions. Plant Soil 241:187–196

    Article  CAS  Google Scholar 

  • Beraha L, Wisniewski V, Garber ED (1983) Avirulence and reduced extracellular enzyme activity in Geotrichum candidum. Bot Gazette 144:461–465

    Article  CAS  Google Scholar 

  • Bertagnolli BL, Soglio FKD, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Bhuiyan NI (1995) Intensive cropping and soil nutrient balance in Bangladesh. In: Hussain MS, Huq SMI, Iqbal M, Khan TH (eds) Improving soil management for intensive cropping in the tropics and sub-tropics. Bangladesh Agricultural Research Council, Dhaka, pp 61–71

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Brittenham GM (1994) New advances in iron metabolism, iron deficiency and iron overload. Curr Opin Hematol 1:549–556

    Google Scholar 

  • Brock JL, Albrecht KA, Tilbrook JC, Hay MJM (2000) Morphology of white clover during development from seed to clonal populations in grazed pastures. J Agric Sci 135:103–111

    Article  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  CAS  Google Scholar 

  • Çakmakçi R, Kantar F, Şahin F (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164:527–531

    Article  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Çakmakçi R, Erat M, Erdoğan ÜG, Dönmez MF (2007) The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Catellan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2000) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 779–791

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87

    Article  CAS  Google Scholar 

  • Coelho MRR, Weid I, von der Zahner V, Seldin L (2003) Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol Lett 222:243–250

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant-Microb Interact 7:440–448

    Article  CAS  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2001) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Grussem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 850–900

    Google Scholar 

  • de Freitas JR (2000) Yield and N assimilation of winter wheat (Triticum aestivum., var Norstar) inoculated with rhizobacteria. Pedobiologia 44:97–104

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Article  Google Scholar 

  • Döbereiner J, Baldani VLD (1998) Biological nitrogen fixation by endophytic diazotrophs in non-leguminous crops in the tropics. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, pp 3–7

    Chapter  Google Scholar 

  • Drepper T, Raabe K, Giaourakis D, Gendrullis M, Masepohl B, Klipp W (2002) The Hƒq-like protein Nrƒa of the phototrophic purple bacterium Rhodobacter capsulatus controls ­nitrogen fixation via regulation of niƒA and anƒA expression. FEMS Microbiol Lett 215:221–227

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of Rhizobia in the control of root diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Elbadry M, El-Bassel A, Elbanna K (1999) Occurrence and dynamics of phototrophic purple nonsulphur bacteria compared with other asymbiotic nitrogen fixers in rice fields of Egypt. World J Microbiol Biotechnol 15:359–362

    Article  Google Scholar 

  • Fankem H, Nwaga D, Deubel A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotechnol 5:2450–2460

    CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2007) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193

    Article  CAS  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Photohormones in soil: microbial production and function. Deker, New York, p 503

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  PubMed  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Ghaderi A, Aliasgharzad N, Oustan S, Olsson PA (2008) Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil Environ 27:71–76

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to cleanup the environment. Biotechnol Adv 21(3):83–393

    Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology – principles and applications of recombinant DNA, 3rd edn. ASM Press, Washington, DC, pp 436–454

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, 267pp

    Book  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenises in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani A, Yagil GE, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agri Hortic 12:185–193

    Article  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone responsive transcription. Cell Mol Life Sci 54:619–627

    Article  PubMed  CAS  Google Scholar 

  • Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2011) Soil beneficial bacteria and their role in plant growth promotion. A Review. Ann Microbiol 60:579–598

    CAS  Google Scholar 

  • Hayat R, Ali S, Siddique MT, Chatha TH (2008a) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40(2):711–722

    CAS  Google Scholar 

  • Hayat R, Ali S, Ijaz SS, Chatha TH, Siddique MT (2008b) Estimation of N2-fixation of mung bean and mash bean through xylem uriede technique under rainfed conditions. Pak J Bot 40(2):723–734

    CAS  Google Scholar 

  • He ZL, Zhu J (1988) Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol Biochem 30:917–923

    Article  Google Scholar 

  • Hegazi NA, Faye M, Amin G, Hamza MA, Abbas M, Youssef H, Monib M (1998) Diazotrophs associated with non-legumes grown in sandy soil. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, pp 209–222

    Chapter  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Hersman LE, Folsythe JH, Ticknor LO, Maurice PA (2001) Growth of Pseudomonas mendocina on Fe (III) (hydr) oxides. Appl Environ Microbiol 67:4448–4453

    Article  PubMed  CAS  Google Scholar 

  • Hoflich G (2000) Colonization and growth promotion of non-legumes by Rhizobium bacteria. Micobial biosystems: new prontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 827–830

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Imsande J (1998) Nitrogen deficit during soybean pod fill and increased plant biomass by vigorous N2 fixation. Eur J Agron 8(1–2):1–11

    Article  Google Scholar 

  • Jadhav RS, Thaker NV, Desai A (1994) Involvement of the siderophore of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Ban˜os, pp 119–140

    Google Scholar 

  • Kanungo PK, Panda D, Adhya TK, Ramakrishnan B, Rao VR (1997) Nitrogenase activity and nitrogen fixing bacteria associated with rhizosphere of rice cultivars. J Sci Food Agric 73:485–488

    Article  CAS  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan Y (1992) Biological nitrogen fixation in no leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury AIMA, KecSkes ML (2004a) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Boil Biochem 36(8):1229–1244

    Article  CAS  Google Scholar 

  • Kennedy N, Brodie E, Conolly J, Clipson N (2004b) Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ Microbiol 6:1070–1080

    Article  PubMed  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309

    Article  PubMed  CAS  Google Scholar 

  • Khan AA, Jillani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998a) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fert Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998b) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005a) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40:260–268

    Article  PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005b) Biological control of late leaf spot of peanut (Arachis hypogaea L.) with chitinolytic bacteria. Phytopathology 10:1157–1165

    Article  CAS  Google Scholar 

  • Kishore GK, Pande S, Rao JN, Podile AR (2005c) Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J Plant Pathol 113(3):315–320

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31(1–2):91–100

    Article  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fert Soils 28:301–305

    Article  CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Lee S, Pierson B, Kennedy C (2002) Genetics and biochemistry of nitrogen fixation and other factors beneficial to host plant growth in diazotrophic endophytes. In: Vanderleyden J (ed) Proceedings of the ninth international symposium on nitrogen fixation with nonlegumes, Katholique Universiteit, Leuven, Belgium, pp 41–42

    Google Scholar 

  • Li J, Ovakin DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Entreobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  PubMed  CAS  Google Scholar 

  • Ligero F, Poreda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation is in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488

    Article  CAS  Google Scholar 

  • Lopez-Millan AF, Morales F, Abadia A, Abadia J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis) trees. J Exp Bot 52:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Mirza MS, Hassan U, Mehnaz S, Rasul G, Haurat J, Bauy R, Normanel P (2002) The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 73–83

    Google Scholar 

  • Manjula K, Kishore GK, Podile AR (2004) Whole cells of Bacillus subtilis AF 1 proved effective than cell free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can J Microbiol 50:737–744

    Article  PubMed  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439

    Article  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    CAS  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, London

    Google Scholar 

  • Nguyen TH, Deaker R, Kennedy IR, Roughly RJ (2003) The positive yield response of field-grown rice to introduction with a multistrain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35:231–245

    Google Scholar 

  • Nielson P, Sorenson J (1997) Multi-target and medium independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192

    Article  Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1991) Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant Soil 135:213–221

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Okan Y, Kapulnik Y (1986) Development and function of Azospirillum inoculated roots. Plant Soil 90:3–16

    Article  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Article  CAS  Google Scholar 

  • Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK (2004) Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agric Ecosyst Environ 101:31–38

    Article  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, London, 340pp

    Google Scholar 

  • Paynel F, Murray PJ, Cliquet B (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229:235–243

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant Soil 174:83–101

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BWM, Knoester M, Sluis IV, Bakker PAHM, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur J Plant Pathol 107:51–61

    Article  Google Scholar 

  • Plessner O, Klapach T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Amsterdam, pp 195–230

    Chapter  Google Scholar 

  • Ponmurugan P, Gopi C (2006) Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J Agron 5:600–604

    Article  Google Scholar 

  • Primrose SB (1979) Ethylene and agriculture: the role of the microbe. J Appl Bacteriol 46:1–25

    Article  CAS  Google Scholar 

  • Rao AV (2004) Microbial biotechnology for sustainable agricultural production in arid soils. In: Ray RC (ed) Soil microbial biotechnology for sustainable agricultural production. Oxford and IBH Publishing Co., New Delhi

    Google Scholar 

  • Rashid A (1996) Secondary and micronutrients. In: Rashid A, Memon KS (eds) Soil science. National Book Foundation, Islamabad, pp 341–385

    Google Scholar 

  • Reeves TG, Waddington SR, Ortiz-Monasterio I, Banziger M, Cassadey K (2002) Removing nutritional limits to maize and wheat production: a developing country perspective. In: Kennedy IR, Choudhury ATMA (eds) Biofertilizers in action. Rural Industries Research and Development Corporation, Canberra, pp 11–36

    Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, DeLey J (1993) Azoarcus gen. Nov., nitrogen fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth) and description of two species, Azoarcus indigens sp. Nov. and Azoarcus communis sp. Nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Reinhold-Hurek B, Egener T, Hurek T, Martin D, Sarkar A, Zhang L, Miche L (2002) Regulation of nitrogen fixation and assimilation of Azoarcus sp. BH72 new approaches to study biodiversity of grass endophytes. In: Vanderleyden J (ed) Proceedings of the ninth international symposium on nitrogen fixation with non-legumes. Katholique Universideit Leuven, Leuven, p 48

    Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döberener J (2000) Biological dinitrogen fixation in the graminae and palm trees. Crit Rev Plant Sci 19:227–247

    Article  CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  PubMed  CAS  Google Scholar 

  • Reyes E, Garcia-Castro I, Esquivelm F, Hornedo J, Cortes-Funes H, Solovera J, Alvarez-Mon M (1999) Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response. Br J Cancer 80(1/2):229–235

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Riggs PG, Chelius MK, Iniguez AL, Kaeppler SM, Triplet EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Roos W (1984) Relationship between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyrlopium. J Gen Microbiol 130:1007–1014

    CAS  Google Scholar 

  • Rosado AS, Seldin L (1993) Production of potentially novel anti-microbial substance by Bacillus polymyxa. World J Microbiol Biotechnol 9:521–528

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. J Appl Entomol 132:469–479

    Article  Google Scholar 

  • Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F (2001) Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 39:351–360

    Article  PubMed  CAS  Google Scholar 

  • Scharf PC (2001) Soil and plant tests to predict optimum nitrogen rates for corn. J Plant Nutr 24:805–826

    Article  CAS  Google Scholar 

  • Schippers B, Scheffer RJ, Lugtenberg JJ, Weisbek PJ (1995) Biocoating of seed with plant growth promoting rhizobacteria to improve plant establishment. Outlook Agric 24:179–185

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Shiferaw B, Bantilan MCS, Serraj R (2004) Harnessing the potential of BNF for poor farmers: technological policy and institutional constraints and research need. In: Serraj R (ed) Symbiotic nitrogen fixation: prospects for enhanced application in tropical agriculture. Oxford and IBH publishing Co. Pvt. Ltd., New Delhi, p 3

    Google Scholar 

  • Shishido M, Breuil C, Christopher PC (1999) Endophytic colonization of spruce by plant growth promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196

    Article  CAS  Google Scholar 

  • Singh S, Kapoor KK (1998) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fert Soils 28:139–144

    Article  Google Scholar 

  • Stajner D, Gasaić O, Matković B, Varga SZI (1995) Metolachlor effect on antioxidants enzyme activities and pigments content in seeds and young leaves of wheat (Triticum aestivum L.). Agr Med 125:267–273

    Google Scholar 

  • Stajner D, Kevreaan S, Gasaić O, Mimica-Dudić N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Google Scholar 

  • Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239

    Article  CAS  Google Scholar 

  • Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137

    Google Scholar 

  • Sudha SN, Jayakumar R, Sekar V (1999) Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa. Curr Microbiol 38:163–167

    Article  PubMed  CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Tanaka H, Watanabe T (1995) Glucanases and chitinases of Bacillus circulans WL-12. J Ind Microbiol 114:478–483

    Article  Google Scholar 

  • Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel and Dekker, New York, pp 57–81

    Google Scholar 

  • Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tran Vân V, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  Google Scholar 

  • Urashima Y, Hori K (2003) Selection of PGPR which promotes the growth of spinach. Jpn J Soil Sci Plant Nutr 74:157–162

    Google Scholar 

  • Van Veen JA, Van Overbeek LS, Van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 16(2):121–135

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576

    Article  CAS  Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Google Scholar 

  • Williams RL, Kennedy IR (2002) A model for testing the effectiveness of biofertiliser for Australian rice production. In: Choudhury ATMA, Kennedy IR (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 112–114

    Google Scholar 

  • Yahya A, Azawi SKA (1998) Occurrence of phosphate solubilizing bacteria in some Iranian soils. Plant Soil 117:135–141

    Article  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Zahir A, Muhammad A, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advan Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms. Ph.D. thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hayat, R., Ahmed, I., Sheirdil, R.A. (2012). An Overview of Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_22

Download citation

Publish with us

Policies and ethics