Skip to main content

Aperiodic Silicon Nanowire Arrays: Fabrication, Light Trapping Properties and Solar Cell Applications

  • Chapter
  • First Online:
Advances in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 79))

Abstract

Solar photovoltaic (SPV) is capable of providing the most feasible carbon-free route to the worldwide traditional power consumption. During the last decade, there has been tremendous development in silicon wafer based photovoltaic (PV) cells technology and today commercial silicon PV cells over 20 % efficiencies have been achieved. However, large-scale implementation of silicon wafer PV is currently not economical because of their high cost as compared to traditional power sources. One of the primary cost components for silicon PV cells is the starting silicon wafer, which requires extensive purification to maintain reasonable performance. Therefore, development of efficient and low cost PV devices is extremely important. Silicon nanowires (SiNWs) are a very promising candidate for next generation PV. The SiNW arrays exhibit low reflection, strong broadband light absorption and may be used as antireflection surface in solar cells. In addition to enhanced optical properties, nanowire arrays also have the potential for efficient charge carrier collection across the nanowire diameter for radial junction (homo/hetro p-n junctions) solar cells and therefore may relax high quality material requirement, enabling lower-cost PV cells. In the chapter, a short review of aperiodic SiNW arrays fabrication by silver assisted wet chemical etching method, their light trapping properties and PV applications with emphasis on SiNW arrays based solar cells would be presented. Finally, challenges in effective use of SiNW arrays in PV devices and future perspective would also be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, H. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239 (2010)

    Article  Google Scholar 

  2. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082 (2010)

    Article  Google Scholar 

  3. L. Tsakalakos, J. Balch, J. Fronheiser, M. Shih, S. LaBoeuf, M. Pietrzykowski, P. Codella, B. Korevaar, O. Sulima, J. Rand, A. Davuluru, U. Ropol, Strong broadband absorption in silicon nanowire arrays with a large lattice constant for photovoltaic applications. J. Nanophoton. 1, 013552 (2007)

    Article  Google Scholar 

  4. B. Tian, X. Zheng, T. Kempa, Y. Fang, J. Huang, C. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)

    Article  Google Scholar 

  5. E. Garnett, P. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224 (2008)

    Article  Google Scholar 

  6. B. Kayes, H. Atwater, N. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 7, 114302 (2005)

    Article  Google Scholar 

  7. M. Putnam, S. Boettcher, M. Kelzenberg, D. Turner-Evans, J. Spurgeon, E. Warren, R. Briggs, N. Lewis, H. Atwater, Si microwire-array solar cells. Energy Environ. Sci. 3, 1037 (2010)

    Article  Google Scholar 

  8. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007)

    Article  Google Scholar 

  9. C. Kenrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, J. Redwing, Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 97, 143108 (2010)

    Article  Google Scholar 

  10. K. Peng, S. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 20, 1 (2010)

    Google Scholar 

  11. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, High performance wire-array silicon solar cells. Prog. Photovolt. Res. Appl. 10, 1002 (2010)

    Google Scholar 

  12. J. Zhu, Z. Yu, G. Burkhard, C. Hsu, S. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279 (2009)

    Article  Google Scholar 

  13. C. Lin, M. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Nano Lett. 7, 3249 (2007)

    Article  Google Scholar 

  14. B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Silicon nanowire–poly(3, 4ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells. Appl. Phys. Lett. 99, 113510 (2011)

    Article  Google Scholar 

  15. E.A. Dalchiele, F. Martín, D. Leinen, R.E. Marotti, J.R. Ramos Barrado, Single crystalline silicon nanowire array based photoelectrochemical cells. J. Electrochem. Soc. 156, K77 (2009)

    Article  Google Scholar 

  16. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)

    Article  Google Scholar 

  17. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549 (2009)

    Article  Google Scholar 

  18. R.S. Wagner, W.C. Ellis, Vapor liquid solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)

    Article  Google Scholar 

  19. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold silane vapor liquid solid reaction. J. Vac. Sci. Technol. B 15, 554 (1997)

    Article  Google Scholar 

  20. R.L. Latu, C. Mouchet, C. Cayron, E. Rouviere, J.P. Simonato, Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J. Nanopart. Res. 10, 1287 (2008)

    Article  Google Scholar 

  21. B. Fuhrmann, H.S. Leipner, H.R. Höche, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5, 2524 (2005)

    Article  Google Scholar 

  22. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998)

    Article  Google Scholar 

  23. Y.H. Yang, S.J. Wu, S.H. Chiu, P. Lin, Y.T. Chen, Catalytic growth of silicon nanowires assisted by laser ablation. J. Phy. Chem. B 108, 846 (2004)

    Article  Google Scholar 

  24. H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, J. Lin, Growth of Si nanowires by thermal evaporation. Nanotechnology 16, 417 (2005)

    Article  Google Scholar 

  25. S.K. Srivastava, P.K. Singh, V.N. Singh, K.N. Sood, D. Haranath, V. Kumar, Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide. Physica E 41, 1545 (2009)

    Article  Google Scholar 

  26. S.D. Hutagalung, K.A. Yaacob, A.F.A. Aziz, Oxide assisted growth of silicon nanowires by carbothermal evaporation. Appl. Surf. Sci. 254, 633 (2007)

    Article  Google Scholar 

  27. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000)

    Article  Google Scholar 

  28. J. Mart, R. Garcia, Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21, 245301 (2010)

    Article  Google Scholar 

  29. Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt, A.C. Ferrari, W.I. Milne, Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B 27, 1520 (2009)

    Article  Google Scholar 

  30. K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembly nanoelectrochemistry. Adv. Matter. 14, 1164 (2002)

    Article  Google Scholar 

  31. K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv. Funct. Mater. 13, 127 (2003)

    Article  Google Scholar 

  32. T. Qiu, X.L. Wu, G.G. Siu, P.K. Chu, Intergrowth mechanism of silicon nanowires and silver dendrites. J. Electron. Mater. 35, 1879 (2006)

    Article  Google Scholar 

  33. D. Kumar, S.K. Srivastava, P.K. Singh, K.N. Sood, V.N. Singh, N. Dilawar, M. Husain, Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. J. Nanopart. Res. 12, 2267 (2010)

    Article  Google Scholar 

  34. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, S.-T. Lee, Ordered silicon nanowire arrays via nanosphere lithography and metal induced etching. Appl. Phys. Lett. 90, 163123 (2007)

    Article  Google Scholar 

  35. Z. Huang, N. Geyer, P. Werner, J.D. Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285 (2011)

    Article  Google Scholar 

  36. K. Peng, J. Zhu, Simultaneous gold deposition and formation of silicon nanowire arrays. J. Electroanal. Chem. 558, 35 (2003)

    Article  Google Scholar 

  37. K. Peng, J. Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim. Acta 49, 2563 (2004)

    Article  Google Scholar 

  38. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, Uniform axial orientation alignment of one dimensional single crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 44, 2737 (2005)

    Article  Google Scholar 

  39. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16, 387 (2006)

    Article  Google Scholar 

  40. H. Fang, Y. Wu, J. Zhao, J. Zhu, Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17, 3768 (2006)

    Article  Google Scholar 

  41. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S.T. Lee, Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 12, 7942 (2006)

    Article  Google Scholar 

  42. T. Qui, X.L. Wu, Y.F. Mei, G.J. Wan, P.K. Chu, G.G. Siu, From Si nanotubes to nanowires: synthesis, characterization, and self-assembly. J. Cryst. Growth 277, 143 (2005)

    Article  Google Scholar 

  43. S.K. Srivastava, D. Kumar, S.W. Schmitt, K.N. Sood, S.H. Christiansen, P.K. Singh, Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Nanotechnology 25, 175601 (2014)

    Article  Google Scholar 

  44. X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 77, 2572 (2000)

    Article  Google Scholar 

  45. S.K. Gandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd edn. (Willey, India, 2009), p. 195

    Google Scholar 

  46. W.M. Bullis, Properties of gold in silicon. Solid State Electron. 9, 143 (1996)

    Article  Google Scholar 

  47. C. del Cañizo, I. Tobías, R. Lago-Aurrekoetxea, A. Luque, Influence of depth-inhomogeneity of lifetime in silicon solar cells. J. Electrochem. Soc. 149, G522 (2002)

    Article  Google Scholar 

  48. M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 112, 4444 (2008)

    Article  Google Scholar 

  49. Z.P. Huang, T. Shimizu, S. Senz, Z. Zhang, X.X. Zhang, W. Lee, N. Geyer, U. Gosele, Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett. 9, 2519 (2009)

    Article  Google Scholar 

  50. V.A. Sivakov, G. Brönstrup, B. Pecz, A. Berger, G.Z. Radnoczi, M. Krause, S.H. Christiansen, Realization of vertical and zigzag single crystalline silicon nanowire architectures. J. Phys. Chem. C 114, 3798 (2010)

    Article  Google Scholar 

  51. W. Wang, D. Li, M. Tian, Y.-C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649 (2012)

    Article  Google Scholar 

  52. H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, J.-H. He, Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 4, 2863 (2011)

    Article  Google Scholar 

  53. B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22, 155606 (2011)

    Article  Google Scholar 

  54. B.S. Kim, S. Shin, S.J. Shin, K.M. Kim, H.H. Cho, Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings. Langmuir 27, 10148 (2011)

    Article  Google Scholar 

  55. S.L. Cheng, C.H. Chung, H.C. Lee, A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates. J. Electrochem. Soc. 155, D711 (2008)

    Article  Google Scholar 

  56. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech. 3, 168 (2008)

    Article  Google Scholar 

  57. O. Gunawan, S. Guha, Characteristicsofvapor–liquid–solid grown silicon nanowire solar cells. Sol. Energy Mater. Sol. Cells 93, 1388 (2009)

    Article  Google Scholar 

  58. C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Morphological control of single crystalline silicon nanowire arrays near room temperature. Adv. Mater. 20, 3811 (2008)

    Article  Google Scholar 

  59. M.A. Green, Silicon Solar Cells: Advanced Principles and Practice (Bridge Printery, Sydney, 1995)

    Google Scholar 

  60. P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, Effectiveness of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103 (2001)

    Article  Google Scholar 

  61. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998)

    Article  Google Scholar 

  62. S. Wang, X.Z. Yu, H.T. Fan, Simple lithographic approach for subwavelength structure antireflection. Appl. Phys. Lett. 91, 061105 (2007)

    Article  Google Scholar 

  63. M.E. Motamedi, W.H. Southwell, W.J. Gunning, Antireflection surfaces in silicon using binary optics technology, reflection properties of nanostructure-arrayed silicon surfaces. Appl. Opt. 31, 4371 (1992)

    Article  Google Scholar 

  64. K. Hadobas, S. Kirsch, A. Carl, M. Acet, E.F. Wassermann, Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 11, 161 (2000)

    Article  Google Scholar 

  65. C.H. Sun, W.L. Min, N.C. Linn, P. Jiang, Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl. Phys. Lett. 91, 231105 (2007)

    Article  Google Scholar 

  66. Z.N. Yu, H. Gao, W. Wu, H.X. Ge, S.Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and lift-off. J. Vac. Sci. Technol. B 21, 2874 (2003)

    Article  Google Scholar 

  67. G. Zhang, J. Zhang, G.Y. Xie, Z.F. Liu, H.B. Shao, Cicada wings: a stamp from nature for nanoimprint lithography. Small 2, 1440 (2006)

    Article  Google Scholar 

  68. Y. Kanamori, E. Roy, Y. Chen, Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 7879, 287 (2005)

    Article  Google Scholar 

  69. P. Lalanne, G.M. Morris, Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8, 53 (1997)

    Article  Google Scholar 

  70. K.Q. Peng, Y. Xu, Y. Yu, Y.J. You, S.T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic application. Small 1, 1062 (2005)

    Article  Google Scholar 

  71. S.K. Srivastava, D. Kumar, P.K. Singh, V. Kumar, Silicon nanowire arrays based “black silicon” solar cells, in Proceeding of 34th IEEE Photovoltaic Specialists Conference, Philadelphia, USA, pp. 1851–1856 (2009)

    Google Scholar 

  72. S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar, M. Husain, Excellent antireflection properties of vertical silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 94, 1506 (2010)

    Article  Google Scholar 

  73. Y. Kato, S. Adachi, Synthesis of Si nanowire arrays in AgO/HF solution and their optical and wettability properties. J. Electrochem. Soc. 158, K157 (2011)

    Article  Google Scholar 

  74. R.-C. Wang, C.-Y. Chao, W.-S. Su, Electrochemically controlled fabrication of lightly doped porous Si nanowire arrays with excellent antireflective and self-cleaning properties. Acta Mater. 60, 2097 (2012)

    Article  Google Scholar 

  75. C.-Y. Chen, W.-J. Li, H.-H. Chen, Tailoring broadband antireflection on a silicon surface through two-step silver-assisted chemical etching. ChemPhysChem 13, 1415 (2012)

    Article  Google Scholar 

  76. N. Nafie, M.A. Lachiheb, M. Bouaicha, Effect of etching time on morphological, optical, and electronic properties of silicon nanowires. Nanoscale Res. Lett. 7, 393 (2012)

    Article  Google Scholar 

  77. A. Yamaguchi, T. Shimizu, Y. Morosawa, K. Takase, T.-L. Chen, S.-M. Lu, H.-C. Chien, S. Shingubara, Morphology dependence of optical reflectance properties for a high-density array of silicon nanowires. Jpn. J. Appl. Phys. 53, 06JF10 (2014)

    Google Scholar 

  78. M.A. Lachiheb, M.A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, M. Bouaïcha, Investigation of the effectiveness of SiNWs used as an antireflective layer in solar cells. Sol. Energy 110, 673 (2014)

    Article  Google Scholar 

  79. Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, G. Ji, Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications. Sol. Energy Mater. Sol. Cells 125, 248 (2014)

    Article  Google Scholar 

  80. Y.-J. Hung, S.-L. Lee, K.-C. Wu, Y. Tai, Y.-T. Pan, Antireflective silicon surface with vertical aligned silicon nanowires realized by simple wet chemical etching processes. Opt. Express 19, 15792 (2011)

    Article  Google Scholar 

  81. Y.-J. Hung, K.-C. Wu, S.-L. Lee, Y.-T. Pan, Realization and characterization of aligned silicon nanowire array with thin silver film. IEEE Photon. J. 3, 617 (2011)

    Article  Google Scholar 

  82. T.-H. Pei, S. Thiyagu, Z. Pei, Ultra high-density silicon nanowires for extremely low reflection in visible regime. Appl. Phys. Lett. 99, 153108 (2011)

    Article  Google Scholar 

  83. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, J.-H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express 18, A286 (2010)

    Article  Google Scholar 

  84. Y. Kanamori, M. Sasaki, K. Hane, Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 24, 1422 (1999)

    Article  Google Scholar 

  85. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, H. Yugami, Antireflective sub-wavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks. Appl. Phys. Lett. 88, 201116 (2006)

    Article  Google Scholar 

  86. C.C. Striemer, P.M. Fauchet, Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 81, 2980 (2002)

    Article  Google Scholar 

  87. S. Koynov, M.S. Brandt, M. Srutzmann, Black non-reflecting silicon surfaces for solar cells. Appl. Phys. Lett. 88, 203107 (2007)

    Article  Google Scholar 

  88. M.L. Kuo, D.J. Poxon, Y.S. Kim, F.W. Mont, J.K. Kim, E.F. Schubert, S.Y. Lin, Realization of a near-perfect antireflection coating for silicon solar energy utilization. Opt. Lett. 33, 2527 (2008)

    Article  Google Scholar 

  89. L. Tian, K.B. Ram, I. Ahmad, L. Menon, M. Holtz, Optical properties of Si nanopore arrays. J. Appl. Phys. 97, 026101 (2005)

    Article  Google Scholar 

  90. L.L. Ma, Y.C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X.M. Ding, X.Y. Hou, Wide-band “black silicon” based on porous silicon. Appl. Phys. Lett. 88, 171907 (2006)

    Article  Google Scholar 

  91. J.S. Li, H.Y. Yu, S.M. Wong, G. Zhang, X.W. Sun, P.G.Q. Lo, D.L. Kwong, Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl. Phys. Lett. 95, 033102 (2009)

    Article  Google Scholar 

  92. C.X. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 17, 19371 (2009)

    Article  Google Scholar 

  93. R.A. Street, W.S. Wong, C. Paulson, Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett. 9, 3494 (2009)

    Article  Google Scholar 

  94. H. Bao, X. Ruan, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 35, 3378 (2010)

    Article  Google Scholar 

  95. W.Q. Xie, J.I. Oh, W.Z. Shen, Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays. Nanotechnology 22, 065704 (2011)

    Article  Google Scholar 

  96. J. Nelson, Physics of Solar Cells (Imperial College Press, London, 2003)

    Book  Google Scholar 

  97. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. Res. Appl. 19, 84 (2011)

    Article  Google Scholar 

  98. C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, J.M. Fthenakis, E.S. Aydil, Photovoltaic manufacturing: present status and future prospects. J. Vac. Sci. Technol. A 29, 030801 (2011)

    Article  Google Scholar 

  99. M.D. Kelzenberg, M.A. Filler, B.M. Kayes, M.C. Putnam, D.B. Turner-Evans, N.S. Lewis, H.A. Atwater, Single-nanowire Si solar cells, in Proceeding of 33rd IEEE Photovoltaic Specialists Conference, pp. 1–6 (2008)

    Google Scholar 

  100. M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W. Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics. Energy Environ. Sci. 4, 866 (2011)

    Article  Google Scholar 

  101. H. Fang, L. Xudong, S. Shuang, X. Ying, Z. Jing, Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19, 255703 (2008)

    Article  Google Scholar 

  102. D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol. Energy Mater. Sol. Cells 95, 215 (2011)

    Article  Google Scholar 

  103. H.-D. Um, K.-T. Park, J.-Y. Jung, X. Li, K. Zhou, S.W. Jee, J.-H. Lee, Incorporation of a self-aligned selective emitter to realize highly efficient (12.8 %) Si nanowire solar cells. Nanoscale 6, 5193 (2014)

    Article  Google Scholar 

  104. C. Chen, R. Jia, H. Li, Y. Meng, X. Liu, T. Ye, S. Kasai, H. Tamotsu, N. Wu, S. Wang, J. Chu, Electrode-contact enhancement in silicon nanowire-array-textured solar cells. Appl. Phys. Lett. 98, 143108 (2011)

    Article  Google Scholar 

  105. H.F. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, T. Ye, Influence of nanowires length on performance of crystalline silicon solar cell. Appl. Phys. Lett. 98, 151116 (2011)

    Article  Google Scholar 

  106. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, M.S. Hyun, J.M. Yang, J.-H. Lee, A wafer-scale Si wire solar cell using radial and bulk p-n junctions. Nanotechnology 21, 445303 (2010)

    Article  Google Scholar 

  107. C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, S. Wang, Silicon nanowire-array-textured solar cells for photovoltaic application. J. Appl. Phys. 108, 094318 (2010)

    Article  Google Scholar 

  108. S.H. Baek, H.S. Jang, J.H. Kim, Characterization of optical absorption and photovoltaic properties of silicon wire solar cells with different aspect ratio. Current Appl. Phys. 11, S30 (2011)

    Article  Google Scholar 

  109. C. Chen, R. Jia, H.H. Yue, H.F. Li, X.Y. Liu, T.C. Ye, K. Seiya, T. Hashizume, S.L. Wang, J.H. Chu, B.S. Xu, Silicon nanostructure solar cells with excellent photon harvesting. J. Vac. Sci. Technol. B 29, 021014 (2011)

    Article  Google Scholar 

  110. B.-R. Huang, Y.-K. Yang, T.-C. Lin, W.-L. Yang, A simple and low-cost technique for silicon nanowire arrays based solar cells. Sol. Energy Mater. Sol. Cells 98, 357 (2012)

    Article  Google Scholar 

  111. M. Kulakci, F. Es, B. Ozdemir, H.E. Unalan, R. Turan, Application of Si nanowires fabricated by metal-assisted etching to crystalline Si solar cells. IEEE J. Photovoltaics 3, 548 (2013)

    Article  Google Scholar 

  112. X.X. Lin, X. Hua, Z.G. Huang, Z. Shen, Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology 24, 235402 (2013)

    Article  Google Scholar 

  113. Z. Zhao, B. Zhang, P. Li, W. Guo, A. Liu, Effective passivation of large area black silicon solar cells by SiO2/SiNx:H stacks. Int. J. Photoenergy 2014, 6 pp, Article ID 683654 (2014). http://dx.doi.org/10.1155/2014/683654

  114. W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.C. Hsu, M.-J. Chen, Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl. Mater. Interfaces 5, 9752 (2013)

    Article  Google Scholar 

  115. J. Oh, H.-C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech. 7, 743 (2012)

    Article  Google Scholar 

  116. G. Jia, M. Steglich, I. Sil, F. Falk, Core-shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 96, 226 (2012)

    Article  Google Scholar 

  117. G. Jia, A. Gwalik, J. Bergmann, B. Eisenhawer, S. Schonherr, G. Andra, F. Falk, Silicon nanowire solar cells with radial p-n heterojunction on crystalline silicon thin films: light trapping properties. IEEE J. Photovoltaics 4, 28 (2014)

    Article  Google Scholar 

  118. G. Jia, G. Andrä, A. Gawlik, S. Schönherr, J. Plentz, B. Eisenhawer, T. Pliewischkies, A. Dellith, F. Falk, Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (<10 µm). Sol. Energy Mater. Sol. Cells 126, 62 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Council of Scientific & Industrial Research (CSIR), India for financial support under CSIR-TAPSUN programme (project code NWP-55) and Supra Institutional Project (SIP-17). Financial supports under CSIR YSA Research project (Grant code: OLP 142732; P-81-113) from CSIR and the BOYSCAST fellowship (Award No. SR/BY/P-03/10) from the Department of Science and Technology (DST), Government of India, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Srivastava, S.K., Rauthan, C.M.S., Kumar, V., Singh, P.K. (2016). Aperiodic Silicon Nanowire Arrays: Fabrication, Light Trapping Properties and Solar Cell Applications. In: Husain, M., Khan, Z. (eds) Advances in Nanomaterials. Advanced Structured Materials, vol 79. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2668-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2668-0_9

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2666-6

  • Online ISBN: 978-81-322-2668-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics