Skip to main content
Log in

Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a simple, inexpensive, and rapid process for large area growth of vertically aligned crystalline silicon nanowires (SiNWs) of diameter 40–200 nm and variable length directly on p-type (100) silicon substrate. The process is based on Ag-induced selective etching of silicon wafers wherein the growth of SiNWs was carried out using the aqueous HF solution containing Ag+ ions at room temperature in a Teflon vessel. Effect of etching time has been investigated to understand the evolution of SiNW arrays. It has been found that the length of SiNWs has a linear dependence on the etching time for small to moderate periods (0–2 h). However, etching rate decreases slowly for long etching times (>2 h). Scanning electron microscopy was used to study the morphology of the SiNW arrays. Structural and compositional analysis was carried out using Raman spectroscopy and high-resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy. Orders of magnitude intensity enhancement along with a small downshift and broadening in the first-order Raman peak of SiNW arrays was observed in comparison to the bulk crystalline silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauer J, Fleischer F, Breitenstein O, Schubert L, Werner P, Gosele V, Zacharias M (2007) Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy. Appl Phys Lett 90:012105(1)–012105(3)

    ADS  Google Scholar 

  • Chuen YL, Chou LJ, Cheng SL, He JH, Wu WW, Chen LJ (2005) Synthesis of taperlike Si nanowires with strong field emission. Appl Phys Lett 86:133112(1)–133112(3)

    ADS  Google Scholar 

  • Fang H, Wu Y, Zhao J, Zhu J (2006) Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17:3768–3774

    Article  CAS  ADS  Google Scholar 

  • Gorostizee P, Kulandainathan MA, Diaz R, Sanz F, Allongue P, Morante JR (2000) Charge exchange processes during the open-circuit deposition of nickel on silicon from fluoride solutions. J Electrochem Soc 147:1026–1030

    Article  Google Scholar 

  • Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang Y, Duan XF, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147

    Article  CAS  PubMed  Google Scholar 

  • Koo S, Li Q, Edelstein MD, Richter CA, Vogel EM (2005) Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett 5:2519–2523

    Article  CAS  PubMed  ADS  Google Scholar 

  • Koynov S, Brandt MS, Stutzmann M (2006) Black nonreflecting silicon surfaces for solar cells. Appl Phys Lett 88:203107(1)–203107(3)

    ADS  Google Scholar 

  • Latu RL, Mouchet C, Cayron C, Rouviere E, Simonato JP (2008) Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J Nanopart Res 10:1287–1291

    Article  Google Scholar 

  • Lehman V (1993) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140:2836–2843

    Article  Google Scholar 

  • Lew KK, Redwing JM (2003) Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J Cryst Growth 254:14–22

    CAS  Google Scholar 

  • Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  CAS  ADS  Google Scholar 

  • Li BB, Ju DP, Zhang SL (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648

    Article  CAS  ADS  Google Scholar 

  • Li C, Fang G, Sheng S, Chen Z, Wang J, Ma S, Zhao X (2005) Raman spectroscopy and field emission properties of aligned silicon nanowire arrays. Physica E 30:169–173

    Article  CAS  ADS  Google Scholar 

  • Meng C-Y, Shih B-L, Lee S-C (2007) Silicon nanowires synthesized by vapor–liquid–solid growth on excimer laser annealed thin gold film. J Nanopart Res 9:657–660

    Article  CAS  Google Scholar 

  • Pan H, Lim S, Poh C, Sun H, Wu X, Feng Y, Lin J (2005) Growth of Si nanowires by thermal evaporation. Nanotechnology 16:417–421

    Article  ADS  Google Scholar 

  • Peng KQ, Yan YJ, Gao SP, Zhu J (2003) Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132

    Article  CAS  Google Scholar 

  • Piscanec S, Contoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, Hoffman SH, Robertson J (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312(1)–241312(4)

    Article  ADS  Google Scholar 

  • Qiu T, Wu XL, Siu GG, Chu PK (2006) Intergrowth growth mechanism of silicon nanowires and silver dendrites. J Electron Mater 35:1879–1884

    Article  CAS  ADS  Google Scholar 

  • Qui T, Wu XL, Mei YF, Wan GJ, Chu PK, Siu GG (2005) From Si nanotubes to nanowires: synthesis, characterization, and self-assembly. J Cryst Growth 277:143–148

    Article  ADS  Google Scholar 

  • Rao CNR, Deepak FL, Gundiah G, Govindraj A (2003) Inorganic nanowires. Prog Solid State Chem 31:5–147

    Article  CAS  Google Scholar 

  • Tian L, Ram KB, Ahmad I, Menon L, Holtz M (2005) Optical properties of Si nanopore arrays. J Appl Phys 97:026101(1)–026101(3)

    ADS  Google Scholar 

  • Tsujino K, Matsumura M (2005) Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv Mater 17:1045–1047

    Article  CAS  Google Scholar 

  • Tsujino K, Matsumura M (2007) Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochem Acta 53:28–34

    Article  CAS  Google Scholar 

  • Wolfe DB, Love JC, Paul KE, Chabinye ML, Whitesides GM (2002) Fabrication of palladium-based microelectronic devices by microcontact printing. Appl Phys Lett 80:2222–2224

    Article  CAS  ADS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Yang YH, Wu SJ, Chiu SH, Lin P, Chen YT (2004) Catalytic growth of silicon nanowires assisted by laser ablation. J Phys Chem B 108:846–852

    Article  CAS  Google Scholar 

  • Yoo JS, Parm IO, Gangopadhyay U, Kim K, Dhungel SK, Mangalaraj D, Yi JS (2006) Black silicon layer formation for application in solar cells. Sol Energy Mater Sol Cells 90:3085–3093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study is funded by the Council of Scientific and Industrial Research (CSIR) India under network project SIP-017. One of the authors, Dinesh Kumar, is grateful to University Grant Commission (UGC), India for providing financial support in the form of research fellowship during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Srivastava, S.K., Singh, P.K. et al. Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. J Nanopart Res 12, 2267–2276 (2010). https://doi.org/10.1007/s11051-009-9795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9795-7

Keywords

Navigation