Skip to main content

Silicon Nanowire Solar Cells

  • Chapter
  • First Online:
Advances in Silicon Solar Cells

Abstract

Over the past decade, silicon nanowire solar cells have been intensively explored as potential platforms for the next-generation photovoltaic (PV) technologies with high power conversion efficiency and low production cost. This chapter discusses the details of the silicon nanowire solar cells in terms of their device structures, fabrication and characterization, electrical and optical properties benefited from the nanowire geometry. These benefits are not only expected to increase the power conversion efficiency, but also considered to reduce the requirement for the material quantity and quality, allowing for potential efficiency improvements and substantial cost reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  2. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005). https://doi.org/10.1038/nmat1387

    Article  Google Scholar 

  3. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007). https://doi.org/10.1038/nature06181

    Article  Google Scholar 

  4. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics. 3, 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184

    Article  Google Scholar 

  5. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005). https://doi.org/10.1063/1.1901835

    Article  Google Scholar 

  6. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007). https://doi.org/10.1063/1.2821113

    Article  Google Scholar 

  7. J.-H. Yun, Y.C. Park, J. Kim, H.-J. Lee, W.A. Anderson, J. Park, Solution-processed germanium nanowire-positioned Schottky solar cells. Nanoscale Res. Lett. 6, 1–5 (2011). https://doi.org/10.1186/1556-276X-6-287

    Article  Google Scholar 

  8. M.M. Adachi, M.P. Anantram, K.S. Karim, Core-shell silicon nanowire solar cells. Sci RepSci Rep. 3, 1546 (2013). https://doi.org/10.1038/srep01546

    Article  Google Scholar 

  9. X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, Q. Wang, Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel. Nanoscale Res. Lett. 7, 1–6 (2012). https://doi.org/10.1186/1556-276X-7-621

    Article  Google Scholar 

  10. W. Sun, M. Brozak, J.C. Armstrong, J. Cui, Solar cell structures based on ZnO/CdS core-shell nanowire arrays embedded in Cu2ZnSnS4 light absorber, in 2013 I.E. 39th Photovoltaic. Specialists Conference PVSC, (2013), pp. 2042–2046

    Google Scholar 

  11. J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011). https://doi.org/10.1038/nnano.2011.139

    Article  Google Scholar 

  12. R. Salazar, A. Delamoreanu, C. Levy-Clement, V. Ivanova, ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells. Energy Procedia 10, 122–127 (2011). https://doi.org/10.1016/j.egypro.2011.10.164

    Article  Google Scholar 

  13. D. Caselli, C.Z. Ning, CdSe nanowire solar cells, in IEEE 39th Photovoltaic Specialists Conference PVSC 2013, (2013), pp. 0268–0270

    Google Scholar 

  14. S. Brittman, Y. Yoo, N.P. Dasgupta, S. Kim, B. Kim, P. Yang, Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. Nano Lett. 14, 4665–4670 (2014). https://doi.org/10.1021/nl501750h

    Article  Google Scholar 

  15. B.D. Yuhas, P. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131, 3756–3761 (2009). https://doi.org/10.1021/ja8095575

    Article  Google Scholar 

  16. S.S. Williams, M.J. Hampton, V. Gowrishankar, I.-K. Ding, J.L. Templeton, E.T. Samulski, J.M. DeSimone, M.D. McGehee, Nanostructured Titania−polymer photovoltaic devices made using PFPE-based Nanomolding techniques. Chem. Mater. 20, 5229–5234 (2008). https://doi.org/10.1021/cm800729q

    Article  Google Scholar 

  17. K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett. 93, 63308 (2008). https://doi.org/10.1063/1.2972113

    Article  Google Scholar 

  18. F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006). https://doi.org/10.1103/PhysRevB.74.121302

    Article  Google Scholar 

  19. B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009). https://doi.org/10.1039/B718703N

    Article  Google Scholar 

  20. E.C. Garnett, P. Yang, Silicon nanowire radial p−n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008). https://doi.org/10.1021/ja8032907

    Article  Google Scholar 

  21. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010). https://doi.org/10.1021/nl100161z

    Article  Google Scholar 

  22. Y. Lu, A. Lal, High-efficiency ordered silicon Nano-conical-frustum Array solar cells by self-powered parallel electron lithography. Nano Lett. 10, 4651–4656 (2010). https://doi.org/10.1021/nl102867a

    Article  Google Scholar 

  23. D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11, 2704–2708 (2011). https://doi.org/10.1021/nl2009636

    Article  Google Scholar 

  24. X. Yu, X. Shen, X. Mu, J. Zhang, B. Sun, L. Zeng, L. Yang, Y. Wu, H. He, D. Yang, High efficiency organic/silicon-nanowire hybrid solar cells: significance of strong inversion layer. Sci. Rep. 5, 17371 (2015). https://doi.org/10.1038/srep17371

    Article  Google Scholar 

  25. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit | Science. http://science.sciencemag.org/content/339/6123/1057. Accessed 11 Apr 2016

  26. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Björk, L. Samuelson, A GaAs nanowire Array solar cell with 15.3 #x0025; efficiency at 1 sun. IEEE J Photovolt. 6, 185–190 (2016). https://doi.org/10.1109/JPHOTOV.2015.2484967

    Article  Google Scholar 

  27. Y. Cui, J. Wang, S.R. Plissard, A. Cavalli, V. TTT, R.P.J. van Veldhoven, L. Gao, M. Trainor, M.A. Verheijen, J.E.M. Haverkort, E.P.A.M. Bakkers, Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 13, 4113–4117 (2013). https://doi.org/10.1021/nl4016182

    Article  Google Scholar 

  28. T.J. Kempa, J.F. Cahoon, S.-K. Kim, R.W. Day, D.C. Bell, H.-G. Park, C.M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. 109, 1407–1412 (2012)

    Article  Google Scholar 

  29. G. Jia, M. Steglich, I. Sill, F. Falk, Core–shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 96, 226–230 (2012). https://doi.org/10.1016/j.solmat.2011.09.062

    Article  Google Scholar 

  30. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, C. Zhou, Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. Nano Lett. 15, 7217–7224 (2015). https://doi.org/10.1021/acs.nanolett.5b03890

    Article  Google Scholar 

  31. S. Wang, X. Yan, X. Zhang, J. Li, X. Ren, Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells. Nanoscale Res LettNanoscale Res Lett. 10, 269 (2015). https://doi.org/10.1186/s11671-015-0744-3

    Article  Google Scholar 

  32. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002)

    Article  Google Scholar 

  33. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002). https://doi.org/10.1038/415617a

    Article  Google Scholar 

  34. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003). https://doi.org/10.1038/nature01551

    Article  Google Scholar 

  35. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004). https://doi.org/10.1146/annurev.matsci.34.040203.112300

    Article  Google Scholar 

  36. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single Crystal growth. Appl. Phys. Lett. 4, 89 (1964). https://doi.org/10.1063/1.1753975

    Article  Google Scholar 

  37. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). https://doi.org/10.1002/adma.200390087

    Article  Google Scholar 

  38. W. Lu, C.M. Lieber, Semiconductor nanowires. J Phys. Appl. Phys. 39, R387–R406 (2006). https://doi.org/10.1088/0022-3727/39/21/R01

    Google Scholar 

  39. L. Cao, B. Garipcan, J.S. Atchison, C. Ni, B. Nabet, J.E. Spanier, Instability and transport of metal catalyst in the growth of tapered silicon nanowires. Nano Lett. 6, 1852–1857 (2006). https://doi.org/10.1021/nl060533r

    Article  Google Scholar 

  40. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004). https://doi.org/10.1021/nl035162i

    Article  Google Scholar 

  41. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004). https://doi.org/10.1063/1.1755846

    Article  Google Scholar 

  42. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432–2434 (2003). https://doi.org/10.1063/1.1611644

    Article  Google Scholar 

  43. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review: in memory of prof. Ulrich Gösele. Adv. Mater. 23, 285–308 (2011). https://doi.org/10.1002/adma.201001784

    Article  Google Scholar 

  44. C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta. 53, 5509–5516 (2008). https://doi.org/10.1016/j.electacta.2008.03.009

    Article  Google Scholar 

  45. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008). https://doi.org/10.1021/nl8023438

    Article  Google Scholar 

  46. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004). https://doi.org/10.1038/nature02674

    Article  Google Scholar 

  47. A. Dalmau Mallorquí, F.M. Epple, D. Fan, O. Demichel, i. Fontcuberta, A. Morral, Effect of the pn junction engineering on Si microwire-array solar cells. Phys Status Solidi A. 209, 1588–1591 (2012). https://doi.org/10.1002/pssa.201228165

    Article  Google Scholar 

  48. E.C. Garnett, Y.-C. Tseng, D.R. Khanal, J. Wu, J. Bokor, P. Yang, Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 4, 311–314 (2009). https://doi.org/10.1038/nnano.2009.43

    Article  Google Scholar 

  49. D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, L.J. Lauhon, Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat. Nanotechnol. 4, 315–319 (2009). https://doi.org/10.1038/nnano.2009.51

    Article  Google Scholar 

  50. E. Koren, N. Berkovitch, Y. Rosenwaks, Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163–1167 (2010). https://doi.org/10.1021/nl9033158

    Article  Google Scholar 

  51. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High-resolution detection of au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008). https://doi.org/10.1038/nnano.2008.5

    Article  Google Scholar 

  52. G. Li, H. Li, J.Y.L. Ho, M. Wong, H.S. Kwok, Nanopyramid structure for ultrathin c-Si tandem solar cells. Nano Lett. 14, 2563–2568 (2014). https://doi.org/10.1021/nl500366c

    Article  Google Scholar 

  53. C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, Y. Cui, High-efficiency amorphous silicon solar cell on a periodic Nanocone back reflector. Adv. Energy Mater. 2, 628–633 (2012). https://doi.org/10.1002/aenm.201100514

    Article  Google Scholar 

  54. Z. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829–843 (2009). https://doi.org/10.1007/s12274-009-9091-y

    Article  Google Scholar 

  55. G. Li, J.Y.L. Ho, H. Li, H.-S. Kwok, Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells. Appl. Phys. Lett. 104, 231113 (2014). https://doi.org/10.1063/1.4883496

    Article  Google Scholar 

  56. J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and Nanocone arrays. Nano Lett. 9, 279–282 (2009). https://doi.org/10.1021/nl802886y

    Article  Google Scholar 

  57. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, J.-H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express. 18, A286–A292 (2010)

    Article  Google Scholar 

  58. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotechnol. 10, 624–628 (2015). https://doi.org/10.1038/nnano.2015.89

    Article  Google Scholar 

  59. E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Devices 29, 300–305 (1982). https://doi.org/10.1109/T-ED.1982.20700

    Article  Google Scholar 

  60. O.L. Muskens, S.L. Diedenhofen, B.C. Kaas, R.E. Algra, E.P.A.M. Bakkers, J. Gómez Rivas, A. Lagendijk, Large photonic strength of highly tunable resonant nanowire materials. Nano Lett. 9, 930–934 (2009). https://doi.org/10.1021/nl802580r

    Article  Google Scholar 

  61. L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). https://doi.org/10.1038/nmat2477

    Article  Google Scholar 

  62. S.-K. Kim, X. Zhang, D.J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, J.F. Cahoon, Doubling absorption in nanowire solar cells with dielectric Shell optical antennas. Nano Lett. 15, 753–758 (2015). https://doi.org/10.1021/nl504462e

    Article  Google Scholar 

  63. T. Voss, G.T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, F. Marlow, High-order waveguide modes in ZnO nanowires. Nano Lett. 7, 3675–3680 (2007). https://doi.org/10.1021/nl071958w

    Article  Google Scholar 

  64. S.-K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.-D. Song, H.-G. Park, C.M. Lieber, Tuning light absorption in Core/Shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012). https://doi.org/10.1021/nl302578z

    Article  Google Scholar 

  65. Z. Wu, J.B. Neaton, J.C. Grossman, Quantum confinement and electronic properties of tapered silicon nanowires. Phys. Rev. Lett. 100, 246804 (2008). https://doi.org/10.1103/PhysRevLett.100.246804

    Article  Google Scholar 

  66. Z. Wu, J.B. Neaton, J.C. Grossman, Charge separation via strain in silicon nanowires. Nano Lett. 9, 2418–2422 (2009). https://doi.org/10.1021/nl9010854

    Article  Google Scholar 

  67. Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009). https://doi.org/10.1038/nmat2493

    Article  Google Scholar 

  68. Y. Dan, K. Seo, K. Takei, J.H. Meza, A. Javey, K.B. Crozier, Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 11, 2527–2532 (2011). https://doi.org/10.1021/nl201179n

    Article  Google Scholar 

  69. M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W. Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics. Energy Environ. Sci. 4, 866 (2011). https://doi.org/10.1039/c0ee00549e

    Article  Google Scholar 

  70. X. Yan, C. Zhang, J. Wang, X. Zhang, X. Ren, A high-efficiency Si nanowire Array/Perovskite hybrid solar cell. Nanoscale Res. Lett. 12, 1.14 (2017). https://doi.org/10.1186/s11671-016-1785-y

    Article  Google Scholar 

  71. Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, Y.M. Habib, Fabrication and electrical properties of Si nanowires synthesized by al catalyzed vapor−liquid−solid growth. Nano Lett. 9, 4494–4499 (2009). https://doi.org/10.1021/nl902808r

    Article  Google Scholar 

  72. N. Anttu, Shockley–Queisser detailed balance efficiency limit for nanowire solar cells. ACS Photonics. 2, 446–453 (2015). https://doi.org/10.1021/ph5004835

    Article  Google Scholar 

  73. Y. Xu, T. Gong, J.N. Munday, The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015). https://doi.org/10.1038/srep13536

    Article  Google Scholar 

  74. X. Wang, M.R. Khan, M. Lundstrom, P. Bermel, Performance-limiting factors for GaAs-based single nanowire photovoltaics. Opt. Express 22, A344 (2014). https://doi.org/10.1364/OE.22.00A344

    Article  Google Scholar 

  75. X. Zhai, S. Wu, A. Shang, X. Li, Limiting efficiency calculation of silicon single-nanowire solar cells with considering auger recombination. Appl. Phys. Lett. 106, 63904 (2015). https://doi.org/10.1063/1.4908294

    Article  Google Scholar 

  76. U. Rau, U.W. Paetzold, T. Kirchartz, Thermodynamics of light management in photovoltaic devices. Phys. Rev. B. 90, 35211 (2014). https://doi.org/10.1103/PhysRevB.90.035211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Kwok, HS. (2018). Silicon Nanowire Solar Cells. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_10

Download citation

Publish with us

Policies and ethics