Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 66))

Abstract

Species suitable for providing biomass feedstocks are described together with the essential traits needed in such feedstocks. These traits include those that are essential for successful sustainable production in the field and for their use in conversion into biofuels and co-products. Features of plant breeding are summarized together with the evidence from corn and other crops that substantial gains can be made by breeding using existing methods. The new methods based on molecular genetics that will gradually come to dominate breeding of energy crops are then outlined. These include complete genome sequencing to describe the genetic variation available and the genetic basis of key traits. The use of molecular polymorphic markers to help enable and accelerate selection of improved crops using marker assisted breeding, association breeding and genomic selection is summarized. Finally, opportunities that come from the use of trangenes are outlined, covering both yield-based traits and the biosynthesis of novel chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241(5–6):483–490

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocellulose related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366

    Article  PubMed  CAS  Google Scholar 

  • Barney JN, Ditomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? BioSci 58:64–70. doi: 10.1641/b580111

    Article  Google Scholar 

  • Barth S, Busimi AK, Utz HF, Melchinger AE (2003) Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity 91:36–42

    Article  CAS  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes microcollinearity and its many exceptions. Plant Cell 12(7):1021–1030

    PubMed  CAS  Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829

    Article  Google Scholar 

  • Bouton JH (2007) Molecular breeding of switchgrass as a bioenergy crop. Curr Opin Genet Dev 17:553–558

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Buanafina MM, Langdon T, Hauck B, Dalton S, Morris P (2007) Expression of a fungal ferulic esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6(3):264–280. doi: 10.1111/j1467–7652

    Article  PubMed  Google Scholar 

  • Chapple C, Ladisch M, Melian R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–747

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487

    PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships. Plant Cell 12(5):637–646

    PubMed  CAS  Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Madison, WI, pp 19–30

    Google Scholar 

  • East EM (1936) Heterosis. Genetics 21:375–397

    PubMed  CAS  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163

    Article  Google Scholar 

  • El Bassam N (1998) Energy plant species. James & James, London

    Google Scholar 

  • Foote T, Roberts M, Kurata N, Sasaki T, Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801–807

    PubMed  CAS  Google Scholar 

  • Freeman GF (1919) Heredity of quantitative characters in bread wheat. Genetics 4:1–93

    PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154(1):15–28

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass; the writing is on the walls. New Phytol 178(3):473–485. doi: 10.1111/j1469–8137

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH (2005) How do lignin composition structure and cross linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  • Groose RW, Kojis WP, Bingham ET (1988) Combining ability differences between isogenic and tetraploid alfalfa. Crop Sci 28:7–10

    Article  Google Scholar 

  • Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Handbook of plant breeding, vol 3. Cereals. Springer, New York, pp 1–96

    Google Scholar 

  • Heaton EA, Mascia PN, Flavell R, Thomas S, Long PS, Dohleman FG (2008) Energy crop development: current progress and future prospects. Curr Opin Biotechnol 19:202–209

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: potential gain per unit time and cost. Crop Sci (in press)

    Google Scholar 

  • Hills M, Hall L, Arnison P, Good A (2007) Genetic use restriction technologies (GURTs). Strategies to impede transgene movement. Trends Plant Sci 12:177–183

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD ((2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    Article  CAS  Google Scholar 

  • Hochholdinger F, Hoecher N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:4427–432

    Article  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: New directions for a diverse planet: Proceedings of the 4th International Crop Sci Congress, Brisbane Australia, p 26

    Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87(11):4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  • Jessup RW (2009) Development and status of dedicated energy crops in the United States. In Vitro Cell Dev Biol Plant 45:282–290

    Article  Google Scholar 

  • Krutovsky KV, St. Clair JB, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658

    Article  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Kawazu T, Uchida H, Ohta T, Kuroiwa H (1993) Direct evidence of plastid DNA and mitochondrial DNA in sperm cells in relation to biparental inheritance of organelle DNA in Pelargonium zonale by fluorescence/electron microscopy. Eur J Cell Biol 62:307–313

    PubMed  CAS  Google Scholar 

  • Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Madison, WI, pp 31–48

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lau MW, Gunawan C, Dale B (2009) The impacts of pretreatment on the germentability of pretreated lignocellulose biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotech Biofuels 2:30

    Article  Google Scholar 

  • Levings CS, Dudley JW, Alexander DE (1967) Inbreeding and crossing in autotetraploid maize. Crop Sci 7:72–73

    Article  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes; transcriptomes; and beyond. Curr Opin Plant Biol 12:1–12

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320

    Article  Google Scholar 

  • Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195

    Article  PubMed  CAS  Google Scholar 

  • McCann MC, Carpita NC (2008) Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 11:314–320

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Meyer RC, Törjék O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Peloquin SJ (1975) Breeding value of 2n pollen (diplandroids) in tetraploid x diploid crosses in potatoes. Theor Appl Genet 46:307–314

    Google Scholar 

  • Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418(2):219–232

    Article  PubMed  CAS  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for Brix and height. Plant Genome 1:48–62

    Article  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman MU, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009b) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21

    Article  PubMed  Google Scholar 

  • Penning BW, Hunter III CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151:1703–1728

    Article  PubMed  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA report, Oak Ridge National Laboratory, TN, pp 1–78

    Book  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon R (2006) Effects of coumarate 3-hydroxylase down regulation on on lignin structure. J Biol Chem 281:8843–8853

    Article  PubMed  CAS  Google Scholar 

  • Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction: discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507

    Article  PubMed  CAS  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefining 1:147–157

    Article  CAS  Google Scholar 

  • Sarath G, Akin DE, Mitchell RB, Vogel KP (2008) Cell wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes. Appl Biochem Biotechnol 150:1–14

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B. Levy M, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326(5956):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lübberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population. BMC Genomics 8:22

    Article  PubMed  Google Scholar 

  • Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis: a record of researches directed toward explaining and utilizing the vigor of hybrids. Iowa State College Press, Ames, pp 14–48

    Google Scholar 

  • Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop Plant Biotechnol J 6(7):633–678

    Article  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9066

    Article  PubMed  CAS  Google Scholar 

  • Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal cominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326(5956):1118–1120

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy and environment trilemma. Science 325:270–271

    Article  PubMed  CAS  Google Scholar 

  • Troyer AF, Mascia PN (1998) Key technologies impacting corn genetic improvement—past, present and future. Maydica 44:55–68

    Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248(6):744–754

    Article  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  PubMed  CAS  Google Scholar 

  • Vermerris W (2009) Genetic improvement of bioenergy crops. Springer, New York

    Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier N, Ladisch M, Carpita N (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47 S3:S142–S153

    Google Scholar 

  • Vogel KP (2000) Improving warm-season grasses using selection, breeding, and biotechnology. In: Moore KJB Anderson B (eds) Native warm season grasses: research trends and issues. CSSA Spec Publ 30 CSSA and ASA, Madison, WI

    Google Scholar 

  • Vogel KP, Burson B (2004) Breeding and genetics. In: Moser LE, Sollenberger L, Burson B (eds) Warm-season (C4) grasses. ASA Monogr 45 ASA, CSSA and SSSA, Madison, WI

    Google Scholar 

  • Wang X, Gowik U, Tang H, Bowers J, Westhoff P, Paterson A (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses Genome Biol 10: R68

    Article  PubMed  Google Scholar 

  • Weider C, Stamp P, Christov N, Husken A, Foueillassar X, Camp K-H, Munsch M (2009) Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci 49:77–84. doi: 10.2135/cropsci2007120694

    Article  Google Scholar 

  • Wolt JD (2009) Advancing environmental risk assessment for transgenic biofeedstock crops. Biotechnol Biofuels 2:27

    Article  PubMed  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1050–1966

    Google Scholar 

  • Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yu HS, Russell SD (1994) Occurrence of mitochondria in the nuclei of tobacco sperm cells. Plant Cell 6:1477–1484. doi: 10.1105/tpc6101477

    PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascia, P.N., Portereiko, M., Sorrells, M., Flavell, R.B. (2010). Designing Plants To Meet Feedstock Needs. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_3

Download citation

Publish with us

Policies and ethics