Skip to main content
Log in

Cell-Wall Composition and Accessibility to Hydrolytic Enzymes is Differentially Altered in Divergently Bred Switchgrass (Panicum virgatum L.) Genotypes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aims of this study were to understand the genotypic variability in cell-wall composition and cell-wall accessibility to enzymes in select switchgrass plants obtained from two different populations derived from a base population of octaploid cultivars. Population C+3 was developed by three breeding generations for high digestibility and population C−1 developed by one generation of breeding for low digestibility. Above-ground biomass from 12 selected genotypes, three each with high or low digestibility within each population, was analyzed for their cell-wall aromatics and polysaccharides. The ratio of p-coumaric acid/ferulic acid was greater (P ≤ 0.05) for the high-lignin C−1 population over the low-lignin C+3 population, although the amounts of these two phenolics did not differ between populations. Combined values of guaiacyl + syringyl-lignin were consistently higher in genotypes from the C−1 population as compared to the genotypes from the C+3 population. Overall, p-coumaric acid was released by enzymes in greater amounts than ferulic acid in all these genotypes. Genotypes in the C−1 population exhibited lower dry weight loss as compared to the genotypes in the C+3 population after enzymatic digestion, suggesting changes in cell-wall architecture. Overall, our data highlight the phenotypic plasticity coded by the switchgrass genome and suggest that combining dry matter digestibility with other more specific cell-wall traits could result in genotypes with greater utility as bioenergy feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vogel, K. P. (1996). Journal of Soil and Water Conservation, 51, 137–139.

    Google Scholar 

  2. Vogel, K. P., Brejda, J. J., Walters, D. T., & Buxton, D. R. (2002). Agronomy Journal, 94, 413–420.

    Google Scholar 

  3. McLaughlin, S. B., & Kszos, L. A. (2005). Biomass & Bioenergy, 28, 515–535.

    Article  Google Scholar 

  4. Parrish, D. J., & Fike, F. H. (2005). Critical Reviews in Plant Sciences, 24, 423–459.

    Article  Google Scholar 

  5. Sanderson, M. A., Adler, P. A., Boateng, A., Casler, M. D., & Sarath, G. (2006). Canadian Journal of Plant Science, 86, 1315–1325.

    Google Scholar 

  6. Dien, B. S., Jung, H. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Weimer, P. J., et al. (2006). Biomass & Bioenergy, 30, 880–891.

    Article  CAS  Google Scholar 

  7. Boateng, A. A., Hicks, K. B., & Vogel, K. P. (2006). Journal of Analytical and Applied Pyrolysis, 75, 55–64.

    Article  CAS  Google Scholar 

  8. Kaylen, M. S. (2005). Bioresource Technology, 96, 1943–1949.

    Article  CAS  Google Scholar 

  9. Boylan, D., Bush, V., & Bransby, D. I. (2000). Biomass and Bioenergy, 19, 411–417.

    Article  Google Scholar 

  10. Lau, C. S., Carrier, D. J., Howard, L. R., Lay Jr., J. O., Archambault, J. A., & Clausen, E. C. (2004). Applied Biochemistry and Biotechnology, 113–116, 569–583.

    Article  Google Scholar 

  11. Morrow, W. R., Griffin, W. M., & Matthews, H. S. (2006). Environmental Science & Technology, 40, 2877–2886.

    Article  CAS  Google Scholar 

  12. Hultquist, S. J., Vogel, K. P., Lee, D. J., Arumuganathan, K., & Kaeppler, S. (1997). Crop Science, 37, 595–598.

    Google Scholar 

  13. Missaoui, A. M., Paterson, A. H., & Bouton, J. H. (2005). Theoretical and Applied Genetics, 110, 1372–1383.

    Article  CAS  Google Scholar 

  14. Martínez-Reyna, J. M., & Vogel, K. P. (2002). Crop Science, 42, 1800–1805.

    Google Scholar 

  15. Smart, A. J., Vogel, K. P., Moser, L. E., & Stroup, W. W. (2003). Crop Science, 43, 1427–1433.

    Google Scholar 

  16. Smart, A. J., & Moser, L. E. (1999). Agronomy Journal, 91, 335–338.

    Google Scholar 

  17. Boe, A. (2003). Crop Science, 43, 63–67.

    Google Scholar 

  18. Das, M. K., Fuentes, R. G., & Taliaferro, C. M. (2004). Crop Science, 44, 443–448.

    Google Scholar 

  19. Casler, M. D., & Vogel, K. P. (1999). Crop Science, 39, 12–20.

    Google Scholar 

  20. Vogel, K. P., & Jung, H. J. G. (2001). Critical Reviews in Plant Sciences, 20, 15–49.

    Article  Google Scholar 

  21. Casler, M. D., & Vogel, K. P. (2001). Crop Science, 39, 12–20.

    Google Scholar 

  22. Mitchell, R. B., Vogel, K. P., Klopfenstein, T., Anderson, B., & Masters, R. (2005). Crop Science, 45, 2288–2292.

    Article  Google Scholar 

  23. Gabrielsen, B. C., Vogel, K. P., Anderson, B. E., & Ward, J. K. (1990). Crop Science, 30, 1313–1320.

    CAS  Google Scholar 

  24. Casler, M. D., Buxton, D. R., & Vogel, K. P. (2002). Theoretical and Applied Genetics, 104, 127–131.

    Article  CAS  Google Scholar 

  25. Pedersen, J. F., Funnell, D. L., & Vogel, K. P. (2005). Crop Science, 45, 812–819.

    Article  CAS  Google Scholar 

  26. Hopkins, A. A., Vogel, K. P., & Moore, K. J. (1993). Crop Science, 33, 253–258.

    Google Scholar 

  27. Vogel, K. P. (2004). In L. E. Moser, L. Sollenberger, & B. Burson (Eds.), Warm-season (C 4 ) grasses ASA-CSSA-SSSA Monograph (pp. 561–588). Madison, WI.

  28. Vogel, K. P., & Burson, B. (2004). In L. E. Moser, L. Sollenberger, & B. Burson (Eds.), Warm-season (C 4 ) grasses. ASA-CSSA-SSSA Monograph (pp. 51–96). Madison, WI.

  29. Vogel, K. P., Sarath, G., & Mitchell, R. B. (2005). In F. P. O’Mara et al. (Eds.), XX International Grassland Congress: Wageningen Academic Publ., Wageningen, The Netherlands. p 116.

  30. Morrison III, W. H., Akin, D. E., Ramaswamy, G., & Baldwin, D. (1996). Textile Research Journal, 66, 651–656.

    Article  CAS  Google Scholar 

  31. Akin, D. E., Morrison III, W. H., Rigsby, L. L., Barton II, F. E., Himmelsbach, D. S., & Hicks, K. B. (2006). Applied Biochemistry and Biotechnology, 129–132, 104–116.

    Article  Google Scholar 

  32. Anderson, W. F., Peterson, J., Akin, D. E., & Morrison, W. H. (2005). Applied Biochemistry and Biotechnology, 121–124, 303–310.

    Article  Google Scholar 

  33. Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS Institute, Inc. Cary, NC.

  34. Ehlting, J., Mattheus, N., Aeschliman, D. S., Li, E., Hamberger, B., Cullis, I. F., et al. (2005). Plant Journal, 42, 618–640.

    Article  CAS  Google Scholar 

  35. Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Fourmann, M., Barraud, S., Carret, V., et al. (2004). Theoretical and Applied Genetics, 110, 126–135.

    Article  CAS  Google Scholar 

  36. Boerjan, W., Ralph, J., & Baucher, M. (2003). Annual Review of Plant Biology, 54, 519–546.

    Article  CAS  Google Scholar 

  37. Anterola, A. M., & Lewis, N. G. (2002). Phytochemistry, 61, 221–294.

    Article  CAS  Google Scholar 

  38. Dixon, R. A., Chen, F., Guo, D., & Parvathi, K. (2001). Phytochemistry, 57, 1069–1084.

    Article  CAS  Google Scholar 

  39. Humphreys, J. M., & Chapple, C. (2002). Current Opinion in Plant Biology, 5, 224–229.

    Article  CAS  Google Scholar 

  40. Akin, D. E. (1989). Agronomy Journal, 81, 17–25.

    Google Scholar 

  41. Casler, M. D., & Jung, H. J. G. (2006). Animal Feed Science and Technology, 125, 151–161.

    Article  CAS  Google Scholar 

  42. Casler, M. D. (2001). Advan. Agron., 71, 51–107.

    Article  Google Scholar 

  43. Passardi, F., Penel, C., & Dunand, C. (2004). Trends Plant Science, 9, 534–540.

    Article  CAS  Google Scholar 

  44. MacAdam, J. W., & Grabber, J. H. (2002). Planta, 215, 785–793.

    Article  CAS  Google Scholar 

  45. Jung, H. J., & Casler, M. D. (2006). Crop Science, 46, 1793–1800.

    Article  CAS  Google Scholar 

  46. Sarath, G., Vogel, K. V., & Mitchell, R. B. (2005). In F. P. O’Mara et al. (Eds.), XX International Grassland Congress: Wageningen Academic Publ., Wageningen, The Netherlands. pp 115.

Download references

Acknowledgments

We thank Nathan Palmer, Ashley Hejny, Ashley Sternhagen, Megan Poppas, and Luanne L. Rigsby for technical assistance. The authors gratefully thank W. Herbert Morrison III, ARS-USDA (retired), for his contributions on chemical analyses. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Sarath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarath, G., Akin, D.E., Mitchell, R.B. et al. Cell-Wall Composition and Accessibility to Hydrolytic Enzymes is Differentially Altered in Divergently Bred Switchgrass (Panicum virgatum L.) Genotypes. Appl Biochem Biotechnol 150, 1–14 (2008). https://doi.org/10.1007/s12010-008-8168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8168-5

Keywords

Navigation