Skip to main content

Soil Carbon Sequestration in the Context of Climate Change

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Part of the book series: Advances in Global Change Research ((AGLO,volume 78))

  • 159 Accesses

Abstract

Soil carbon (C) sequestration is one of the major pathways to reverse climate change and reduce its deleterious impact on human civilization. Removal of atmospheric CO2 into other stable pools with long residence time is called C sequestration. To sequester C in soil of agricultural, grazing, forest, and wetlands, adaptation of established and proven technologies is necessary. In this chapter, details of those processes are described with their advantages and disadvantages. Inclusion of leguminous species, use of inputs including fertilizer and irrigation water, and residue retention are important practices in sequestering more C in agricultural, forest, and grazing lands. Managing wetland C is complex and needs to be dealt with caution. Engineering and chemical technologies are new concepts and are mostly at the research stage. The economics and practical adaptability of these practices are yet to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril, G., Martinez, J. M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F., Vidal, L., et al. (2014). Amazon River carbon dioxide outgassing fuelled by wetlands. Nature, 505, 395–398.

    Article  CAS  Google Scholar 

  • Achat, D. L., Fortin, M., Landmann, G., Ringeval, B., & Augusto, L. (2015). Forest soil carbon is threatened by intensive biomass harvesting. Scientific Reports, 5(1), 1–10.

    Article  Google Scholar 

  • Adhikari, S., Bajracharaya, R. M., & Sitaula, B. K. (2009). A review of carbon dynamics and sequestration in wetlands. Journal of Wetlands Ecology, 21, 42–46.

    Article  Google Scholar 

  • Agrimonti, C., Lauro, M., & Visioli, G. (2021). Smart agriculture for food quality: Facing climate change in the 21st century. Critical Reviews in Food Science and Nutrition, 61(6), 971–981.

    Google Scholar 

  • Ammann, C., Flechard, C. R., Leifeld, J., Neftel, A., & Fuhrer, J. (2007). The carbon budget of newly established temperate grassland depends on management intensity. Agriculture, Ecosystems & Environment, 121(1–2), 5–20.

    Article  CAS  Google Scholar 

  • Andriuzzi, W. S., & Wall, D. H. (2017). Responses of belowground communities to large aboveground herbivores: Meta-analysis reveals biome-dependent patterns and critical research gaps. Global Change Biology, 23(9), 3857–3868.

    Article  Google Scholar 

  • Angst, G., Mueller, K. E., Eissenstat, D. M., Trumbore, S., Freeman, K. H., Hobbie, S. E., Chorover, J., Oleksyn, J., Reich, P. B., & Mueller, C. W. (2019). Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 25(4), 1529–1546.

    Article  Google Scholar 

  • Ansari, M. A., Choudhury, B. U., Layek, J., Das, A., Lal, R., & Mishra, V. K. (2022). Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil and Tillage Research, 218, 105318.

    Article  Google Scholar 

  • Augusto, L., Davies, T. J., Delzon, S., & De Schrijver, A. (2014). The enigma of the rise of angiosperms: Can we untie the knot? Ecology Letters, 17(10), 1326–1338.

    Article  CAS  Google Scholar 

  • Autret, B., Beaudoin, N., Rakotovololona, L., Bertrand, M., Grandeau, G., Gréhan, E., Ferchaud, F., & Mary, B. (2019). Can alternative cropping systems mitigate nitrogen losses and improve GHG balance? Results from a 19-yr experiment in Northern France. Geoderma, 342, 20–33.

    Article  CAS  Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24(3), 223–234.

    Article  Google Scholar 

  • Baral, S., Chhetri, B. B., Baral, H., & Vacik, H. (2019a). Investments in different taxonomies of goods: What should Nepal’s community forest user groups prioritize? Forest Policy and Economics, 1(100), 24–32.

    Article  Google Scholar 

  • Baral, S., Chhetri, B. B. K., Baral, H., & Vacik, H. (2019b). Investments in different taxonomies of goods: What should Nepal’s community forest user groups prioritize? Forest Policy and Economics, 100, 24–32.

    Article  Google Scholar 

  • Baral, S., Gautam, A. P., & Vacik, H. (2018a). Ecological and economical sustainability assessment of community forest management in Nepal: A reality check. Journal of Sustainable Forestry, 37(8), 820–841.

    Article  Google Scholar 

  • Baral, S. K., & Katzensteiner, K. (2015). Impact of biomass extraction on soil properties and foliar nitrogen content in a community forest and a semi-protected natural forest in the central mid-hills of Nepal. Tropical Ecology, 56, 323–333.

    CAS  Google Scholar 

  • Baral, S., Gautam, A. P., & Vacik, H. (2018b). Ecological and economical sustainability assessment of community forest management in Nepal: A reality check. Journal of Sustainable Forestry, 37, 820–841.

    Article  Google Scholar 

  • Bárcena, T. G., Kiær, L. P., Vesterdal, L., Stefánsdóttir, H. M., Gundersen, P., & Sigurdsson, B. D. (2014). Soil carbon stock change following afforestation in Northern Europe: A meta-analysis. Global Change Biology, 20(8), 2393–2405.

    Article  Google Scholar 

  • Bastin, J. F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E. M., & Aloui, K. (2017). The extent of forest in dryland biomes. Science, 356(6338), 635–638.

    Article  CAS  Google Scholar 

  • Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79.

    Article  CAS  Google Scholar 

  • Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., Bird, M., Kantzas, E., Taylor, L. L., Sarkar, B., & Kelland, M. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4(3), 138–147.

    Article  Google Scholar 

  • Beillouin, D., Ben‐Ari, T., Malézieux, E., Seufert, V., & Makowski, D. (2021). Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Change Biology, 27(19), 4697–4710.

    Google Scholar 

  • Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., ... Banwart, S. A. (2020). Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815), 242–248.

    Google Scholar 

  • Bellassen, V., & Luyssaert, S. (2014). Carbon sequestration: Managing forests in uncertain times. Nature, 506(7487), 153–155.

    Article  Google Scholar 

  • Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., & Patra, A. K. (2016). Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology, 107, 360–367.

    Article  Google Scholar 

  • Bera, T., Purakayastha, T. J., Patra, A. K., & Datta, S. C. (2018). Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. Journal of Material Cycles and Waste Management, 20(2), 1115–1127.

    Article  CAS  Google Scholar 

  • Bera, T., Vardanyan, L., Inglett, K. S., Reddy, K. R., O’Connor, G. A., Erickson, J. E., & Wilkie, A. C. (2019). Influence of select bioenergy by-products on soil carbon and microbial activity: A laboratory study. Science of the Total Environment, 653, 1354–1363.

    Google Scholar 

  • Bernier, P. Y., Paré, D., Stinson, G., Bridge, S. R., Kishchuk, B. E., Lemprière, T. C., Thiffault, E., Titus, B. D., & Vasbinder, W. (2017). Moving beyond the concept of “primary forest” as a metric of forest environment quality. Ecological Applications, 27(2), 349–354.

    Article  CAS  Google Scholar 

  • Binkley, D. (2005). How nitrogen-fixing trees change soil carbon. In Tree species effects on soils: Implications for global change (pp. 155–164). Springer.

    Google Scholar 

  • Birhane, E., Treydte, A. C., Eshete, A., Solomon, N., & Hailemariam, M. (2017). Can rangelands gain from bush encroachment? Carbon stocks of communal grazing lands invaded by Prosopis juliflora. Journal of Arid Environments, 141, 60–67.

    Article  Google Scholar 

  • Blanco-Canqui, H., Francis, C. A., & Galusha, T. D. (2017). Does organic farming accumulate carbon in deeper soil profiles in the long term? Geoderma, 5(288), 213–221.

    Article  Google Scholar 

  • Bravo-Oviedo, A., Ruiz-Peinado, R., Modrego, P., Alonso, R., & Montero, G. (2015). Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. Forest Ecology and Management, 357, 259–267.

    Article  Google Scholar 

  • Bruce, J. P., Frome, M., Haites, E., Janzen, H., Lal, R., & Paustian, K. (1999). Carbon sequestration in soils. Journal of Soil and Water Conservation, 54(1), 382–389.

    Google Scholar 

  • Brunel, C., Gros, R., Ziarelli, F., & Da Silva, A. M. F. (2017). Additive or non-additive effect of mixing oak in pine stands on soil properties depends on the tree species in Mediterranean forests. Science of the Total Environment, 590, 676–685.

    Article  Google Scholar 

  • Burgess, D., Baldock, J. A., Wetzell, S., & Brand, D. G. (1995). Scarification, fertilization and herbicide treatment effects on planted conifers and soil fertility. Plant and Soil, 168, 513–522.

    Article  Google Scholar 

  • Carolan, R., & Fornara, D. A. (2016). Soil carbon cycling and storage along a chronosequence of re-seeded grasslands: Do soil carbon stocks increase with grassland age? Agriculture, Ecosystems & Environment, 218, 126–132.

    Article  CAS  Google Scholar 

  • Chapin, F. S., III., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, S78–S92.

    Article  Google Scholar 

  • Chapman, S. J., Bell, J. S., Campbell, C. D., Hudson, G., Lilly, A., Nolan, A. J., Robertson, A. H., Potts, J. M., & Towers, W. (2013). Comparison of soil carbon stocks in S cottish soils between 1978 and 2009. European Journal of Soil Science, 64(4), 455–465.

    Article  CAS  Google Scholar 

  • Chen, H., Popovich, S., McEuen, A., & Briddell, B. (2017). Carbon and nitrogen storage of a restored wetland at Illinois’ Emiquon preserve: Potential for carbon sequestration. Hydrobiologia, 804, 139–150.

    Article  CAS  Google Scholar 

  • Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52.

    Article  Google Scholar 

  • Christopher, S. F., & Lal, R. (2007). Nitrogen management affects carbon sequestration in North American cropland soils. Critical Reviews in Plant Sciences, 26(1), 45–64.

    Article  CAS  Google Scholar 

  • Conant, R. T., Cerri, C. E. P., Osborne, B. B., & Paustian, K. (2016). Grassland management impacts on soil carbon stocks: A new synthesis. Ecological Applications, 27, 662–668.

    Article  Google Scholar 

  • Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 11(2), 343–355.

    Article  Google Scholar 

  • Conant, R. T., & Paustian, K. (2002). Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles, 16(4), 90–91.

    Article  Google Scholar 

  • Cusack, D. F., Silver, W. L., Torn, M. S., & McDowell, W. H. (2011). Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests. Biogeochemistry, 104(1), 203–225.

    Article  CAS  Google Scholar 

  • Dawud, S. M., Raulund-Rasmussen, K., Ratcliffe, S., Domisch, T., Finer, L., Joly, F. X., Hättenschwiler, S., & Vesterdal, L. (2017). Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Functional Ecology, 31(5), 1153–1162.

    Article  Google Scholar 

  • Don, A., Rödenbeck, C., & Gleixner, G. (2013). Unexpected control of soil carbon turnover by soil carbon concentration. Environmental Chemistry Letters, 11(4), 407–413.

    Article  CAS  Google Scholar 

  • Dyer, M. I., & Bokhari, U. G. (1976). Plant-animal interactions: Studies of the effects of grasshopper grazing on blue grama grass. Ecology, 57(4), 762–772.

    Article  Google Scholar 

  • Ebermayer, E. (1876). The entire doctrine of forest litter with regard to the chemical statics of silviculture: On the basis of the in the Königl. investigations carried out by the state forests of Bavaria. jumper.

    Google Scholar 

  • Epron, D., Nouvellon, Y., Mareschal, L., e Moreira, R. M., Koutika, L. S., Geneste, B., Delgado-Rojas, J. S., Laclau, J. P., Sola, G., de Moraes Goncalves, J. L., & Bouillet, J. P. (2013). Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: Two case-studies in contrasting tropical environments. Forest Ecology and Management, 301, 102–111.

    Google Scholar 

  • Feng, Y., & Li, X. (2002). A tool to determine long-term sustainable manure application rate for Alberta soils. In Report to Canadian-Alberta beef industry development fund (p. 120).

    Google Scholar 

  • Finn, D., Page, K., Catton, K., Kienzle, M., Robertson, F., Armstrong, R., & Dalal, R. (2016). Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation. Soil Biology and Biochemistry, 99, 117–127.

    Article  CAS  Google Scholar 

  • Flannigan, M. D., Wotton, B. M., Marshall, G. A., De Groot, W. J., Johnston, J., Jurko, N., & Cantin, A. S. (2016). Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Climatic Change, 134(1), 59–71.

    Article  CAS  Google Scholar 

  • Follett, R. F., Kimble, J. M., & Lal, R. (Eds.). (2001). The potential of US grazing lands to sequester carbon and mitigate the greenhouse effect. CRC Press LLC.

    Google Scholar 

  • Fornara, D. A., & Tilman, D. (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96(2), 314–322.

    Article  CAS  Google Scholar 

  • Forrester, D. I., Pares, A., O’hara, C., Khanna, P. K., & Bauhus, J. (2013). Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems, 16(1), 123–132.

    Google Scholar 

  • Francaviglia, R., Di Bene, C., Farina, R., Salvati, L., & Vicente-Vicente, J. L. (2019). Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitigation and Adaptation Strategies for Global Change, 24(5), 795–818.

    Article  Google Scholar 

  • Frey, S. D., Ollinger, S., Nadelhoffer, K. E., Bowden, R., Brzostek, E., Burton, A., Caldwell, B. A., Crow, S., Goodale, C. L., Grandy, A. S., & Finzi, A. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry, 121(2), 305–316.

    Article  CAS  Google Scholar 

  • Gao, W., Yang, H., Kou, L., & Li, S. (2015). Effects of nitrogen deposition and fertilization on N transformations in forest soils: A review. Journal of Soils and Sediments, 15(4), 863–879.

    Article  CAS  Google Scholar 

  • Ghosh, P. K., Hazra, K. K., Venkatesh, M. S., Nath, C. P., Singh, J., & Nadarajan, N. (2019). Increasing soil organic carbon through crop diversification in cereal–cereal rotations of Indo-Gangetic plain. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2), 429–440.

    Article  Google Scholar 

  • Giglio, L., Randerson, J. T., & Van Der Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317–328.

    Article  Google Scholar 

  • Gillman, G. P., Burkett, D. C., & Coventry, R. J. (2001). A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry. Soil Research, 39(4), 799–811.

    Article  CAS  Google Scholar 

  • González, I., Grau Corbí, J. M., Fernández Cancio, A., Jiménez Ballesta, R., & González Cascón, M. R. (2012). Soil carbon stocks and soil solution chemistry in Quercus ilex stands in Mainland Spain. European Journal of Forest Research, 131(6), 1653–1667.

    Article  Google Scholar 

  • Gorham, E. (1995). In G. M. Woodwell & F. T. MacKenzie (Eds.), Biotic feedbacks in the global climatic system (pp. 169–187). Oxford University Press.

    Google Scholar 

  • Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., & Woodbury, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650.

    Article  CAS  Google Scholar 

  • Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J. P., Cardinael, R., Chen, S., & Ciais, P. (2021). Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology, 27(2), 237–256.

    Article  CAS  Google Scholar 

  • Haile, S. G., Nair, P. R., & Nair, V. D. (2008). Carbon storage of different soil-size fractions in Florida silvopastoral systems. Journal of Environmental Quality, 37(5), 1789–1797.

    Article  CAS  Google Scholar 

  • Harrison, K. A., & Bardgett, R. D. (2004). Browsing by red deer negatively impacts on soil nitrogen availability in regenerating native forest. Soil Biology and Biochemistry, 36(1), 115–126.

    Article  CAS  Google Scholar 

  • Hatfield, J. L., & Dold, C. (2019). Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science, 10, 103.

    Article  Google Scholar 

  • Hazra, C. R. (1995). Soil and water conservation in relation to land use and biomass production. In Forage production and utilization. Indian Grassland and Fodder Research Institute.

    Google Scholar 

  • Holdren, J. P. (2008). Science and technology for sustainable well-being. Science, 319(5862), 424–434.

    Article  CAS  Google Scholar 

  • Huang, Z., Clinton, P. W., Baisden, W. T., & Davis, M. R. (2011). Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. Soil Biology and Biochemistry, 43(2), 302–307.

    Article  CAS  Google Scholar 

  • Hussain, S., Hussain, S., Guo, R., Sarwar, M., Ren, X., Krstic, D., Aslam, Z., Zulifqar, U., Rauf, A., Hano, C., & El-Esawi, M. A. (2021). Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants, 10(10), 2001.

    Article  CAS  Google Scholar 

  • IEA. (2022). Direct air capture: A key technology for net zero. International Energy Agency.

    Google Scholar 

  • IPCC. (2000). Land use, land use change, and forestry. Cambridge: Cambridge University Press. http://98.131.92.124/sites/default/files/2000%20Watson%20IPCC.pdf.

  • IPCC. (2007). Climate change-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

    Google Scholar 

  • IPCC. (2001). Climate change 2001: The scientific basis. Contribution of working group 1 to the third assessment report of the IPCC. Cambridge University Press.

    Google Scholar 

  • IPCC. (2005). In B. Metz, O. Davidson, H. C. de Coninck, M. Loos, & L. A. Meyer (Eds.), IPCC special report on carbon dioxide capture and storage. Prepared by working group III of the Intergovernmental Panel on Climate Change (p. 442). Cambridge University Press.

    Google Scholar 

  • Jat, M. L., Chakraborty, D., Ladha, J. K., Parihar, C. M., Datta, A., Mandal, B., … & Gerard, B. (2022). Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. Crop and Environment, 1(1), 86–101.

    Google Scholar 

  • Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T., & Wall, D. H. (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418(6898), 623–626.

    Article  CAS  Google Scholar 

  • James, J. N., Kates, N., Kuhn, C. D., Littlefield, C. E., Miller, C. W., Bakker, J. D., Butman, D. E., & Haugo, R. D. (2018). The effects of forest restoration on ecosystem carbon in western North America: A systematic review. Forest Ecology and Management, 429, 625–641.

    Article  Google Scholar 

  • Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K., & Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3–4), 253–268.

    Article  CAS  Google Scholar 

  • Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., & Papale, D. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5), 315–322.

    Article  CAS  Google Scholar 

  • Jiménez Esquilín, A. E., Stromberger, M. E., & Shepperd, W. D. (2008). Soil scarification and wildfire interactions and effects on microbial communities and carbon. Soil Science Society of America Journal, 72(1), 111–118.

    Article  Google Scholar 

  • Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: Meta analysis. Forest Ecology and Management, 140(2–3), 227–238.

    Article  Google Scholar 

  • Johnston, A. E., Poulton, P. R., & Coleman, K. (2009). Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy, 101, 1–57.

    Article  Google Scholar 

  • Jokubauskaite, I., Karčauskienė, D., Slepetiene, A., Repsiene, R., & Amaleviciute, K. (2016). Effect of different fertilization modes on soil organic carbon sequestration in acid soils. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 66(8), 647–652.

    Google Scholar 

  • Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7(1), 1–10.

    Article  Google Scholar 

  • Kätterer, T., Bolinder, M. A., Berglund, K., & Kirchmann, H. J. (2012). Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agriculturae Scandinavica, Section A–Animal Science, 62(4), 181–198.

    Google Scholar 

  • Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands, 30, 111–124.

    Article  Google Scholar 

  • Khabarov, N., Krasovskii, A., Obersteiner, M., Swart, R., Dosio, A., San-Miguel-Ayanz, J., Durrant, T., Camia, A., & Migliavacca, M. (2016). Forest fires and adaptation options in Europe. Regional Environmental Change, 16(1), 21–30.

    Article  Google Scholar 

  • Kimble, J. M., Follett, R. F., & Cole, C. V. (1998). The potential of US cropland to sequester carbon and mitigate the greenhouse effect. CRC Press.

    Google Scholar 

  • Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., Bret-Harte, M. S., Ewers, B. E., Peters, D. P., Young, D. R., Shaver, G. R., Pendall, E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615–623.

    Article  Google Scholar 

  • Kumar, S., Singh, A. K., Singh, R., Ghosh, A., Chaudhary, M., Shukla, A. K., Kumar, S., Singh, H. V., Ahmed, A., & Kumar, R. V. (2019). Degraded land restoration ecological way through horti-pasture systems and soil moisture conservation to sustain productive economic viability. Land Degradation & Development, 30(12), 1516–1529.

    Article  Google Scholar 

  • Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42, 1363–1371.

    Article  CAS  Google Scholar 

  • Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., Jr., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153–1170.

    Article  CAS  Google Scholar 

  • Laganiere, J., Angers, D. A., & Pare, D. (2010). Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 16(1), 439–453.

    Article  Google Scholar 

  • Laganière, J., Paré, D., Thiffault, E., & Bernier, P. Y. (2017). Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. GCB Bioenergy, 9(2), 358–369.

    Article  Google Scholar 

  • Lal, R. (2002). Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 116(3), 353–362.

    Article  CAS  Google Scholar 

  • Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy & Environmental Science, 1, 86–100.

    Article  CAS  Google Scholar 

  • Lal, R. (2010). Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience, 60(9), 708–721.

    Article  Google Scholar 

  • Lamers, L. P., Vile, M. A., Grootjans, A. P., Acreman, M. C., van Diggelen, R., Evans, M. G., Richardson, C. J., Rochefort, L., Kooijman, A. M., Roelofs, J. G., & Smolders, A. J. (2015). Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biological Reviews, 90(1), 182–203.

    Article  Google Scholar 

  • Larney, F. J., & Angers, D. A. (2012). The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 92(1), 19–38.

    Article  CAS  Google Scholar 

  • Law, B. E., & Waring, R. H. (2015). Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. Forest Ecology and Management, 355, 4–14.

    Article  Google Scholar 

  • Lawrence-Smith, E. J., Curtin, D., Beare, M. H., McNally, S. R., Kelliher, F. M., Calvelo Pereira, R., & Hedley, M. J. (2021). Full inversion tillage during pasture renewal to increase soil carbon storage: New Zealand as a case study. Global Change Biology, 27(10), 1998–2010.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007). A handful of carbon. Nature, 447, 143–144.

    Article  CAS  Google Scholar 

  • Leifeld, J., & Fuhrer, J. (2010). Organic farming and soil carbon sequestration: What do we really know about the benefits? Ambio, 39(8), 585–599.

    Article  CAS  Google Scholar 

  • Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: A review. Science of the Total Environment, 647, 210–222.

    Article  CAS  Google Scholar 

  • Li, D., Niu, S., & Luo, Y. (2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytologist, 195(1), 172–181.

    Article  CAS  Google Scholar 

  • Li, P., Yang, Y., Han, W., & Fang, J. (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 23(9), 979–987.

    Article  Google Scholar 

  • Liao, W., Menge, D. N., Lichstein, J. W., & Ángeles-Pérez, G. (2017). Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Global Change Biology, 23(11), 4777–4787.

    Article  Google Scholar 

  • Liu, E., Yan, C., Mei, X., Zhang, Y., & Fan, T. (2013). Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China. PLoS ONE, 8(2), e56536.

    Article  CAS  Google Scholar 

  • Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259(4).

    Google Scholar 

  • Lloret, F., Calvo, E., Pons, X., & Díaz-Delgado, R. (2002). Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecology, 17(8), 745–759.

    Article  Google Scholar 

  • Löf, M., Dey, D. C., Navarro, R. M., & Jacobs, D. F. (2012). Mechanical site preparation for forest restoration. New Forests, 43(5), 825–848.

    Article  Google Scholar 

  • Lorenz, K., & Lal, R. (2014a). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651–670.

    Article  CAS  Google Scholar 

  • Lorenz, K., & Lal, R. (2014b). Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 34(2), 443–454.

    Article  CAS  Google Scholar 

  • Madigan, A. P., Zimmermann, J., Krol, D. J., Williams, M., & Jones, M. B. (2022). Full Inversion Tillage (FIT) during pasture renewal as a potential management strategy for enhanced carbon sequestration and storage in Irish grassland soils. Science of the Total Environment, 805, 150342.

    Article  CAS  Google Scholar 

  • Maity, S. K., & Mukherjee, P. K. (2011). Effect of brown manuring on grain yield and nutrient use efficiency in dry direct seeded Kharif rice (Oryza sativa L.). Indian Journal of Weed Science, 43(1–2), 61–66.

    Google Scholar 

  • Majumder, S., Neogi, S., Dutta, T., Powel, M. A., & Banik, P. (2019). The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management, 250, 109466.

    Article  CAS  Google Scholar 

  • Martin, D. M. (2017). Ecological restoration should be redefined for the twenty-first century. Restoration Ecology, 25, 668–673.

    Article  Google Scholar 

  • Mayer, M., Prescott, C. E., Abaker, W. E., Augusto, L., Cécillon, L., Ferreira, G. W., James, J., Jandl, R., Katzensteiner, K., Laclau, J. P., & Laganière, J. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, 118127.

    Article  Google Scholar 

  • McNaughton, S. J., Milchunas, D. G., & Frank, D. A. (1996). How can net primary productivity be measured in grazing ecosystems? Ecology, 77(3), 974–977.

    Article  Google Scholar 

  • McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 19(5), 1347–1357.

    Article  Google Scholar 

  • Meena, R. S., Kumar, S., & Yadav, G. S. (2020). Soil carbon sequestration in crop production. In Nutrient dynamics for sustainable crop production (pp. 1–39). Springer.

    Google Scholar 

  • MFSC. (2013). Persistence and change—Review of 30 years of community forestry in Nepal. Ministry of Forests and Soil Conservation, Government of Nepal.

    Google Scholar 

  • Milchunas, D. G., & Lauenroth, W. K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological archives M063–001. Ecological Monographs, 63(4), 327–366.

    Article  Google Scholar 

  • Minkkinen, K., Korhonen, R., Savolainen, I., & Laine, J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900–2100—The impact of forestry drainage. Global Change Biology, 8, 785–799.

    Article  Google Scholar 

  • Mitra, S., Wassmann, R., & Vlek, P. L. (2005). An appraisal of global wetland area and its organic carbon stock. Current Science, 88, 25–35.

    CAS  Google Scholar 

  • Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E., & Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–597.

    Article  Google Scholar 

  • Mitsch, W. J., & Wu, X. (2018). Wetlands and global change. Soil Management and Greenhouse Effect, 6, 205–230.

    Article  Google Scholar 

  • Mitsch, W. J., Zhang, L., Waletzko, E., & Bernal, B. (2014). Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering, 72, 11–24.

    Article  Google Scholar 

  • Miyazawa, M., Takahashi, T., Sato, T., Kanno, H., & Nanzyo, M. (2013). Factors controlling accumulation and decomposition of organic carbon in humus horizons of Andosols. Biology and Fertility of Soils, 49(7), 929–938.

    Google Scholar 

  • Mjöfors, K., Strömgren, M., Nohrstedt, H. Ö., Johansson, M. B., & Gärdenäs, A. I. (2017). Indications that site preparation increases forest ecosystem carbon stocks in the long term. Scandinavian Journal of Forest Research, 32(8), 717–725.

    Article  Google Scholar 

  • Müller, A., Bautze, L., Meier, M., Gattinger, A., Gall, E., Chatzinikolaou, E., Meredith, S., Ukas, T., & Ullmann, L. (2016). Organic farming, climate change mitigation and beyond. Reducing the environmental impacts of EU agriculture.

    Google Scholar 

  • Nahlik, A. M., & Fennessy, M. S. (2016). Carbon storage in US wetlands. Nature Communication, 7, 13835.

    Article  CAS  Google Scholar 

  • Nair, P. R., Nair, V. D., Kumar, B. M., & Haile, S. G. (2009). Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environmental Science & Policy, 12(8), 1099–1111.

    Google Scholar 

  • Nair, P. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237–307.

    Article  CAS  Google Scholar 

  • Nandan, R., Singh, V., Singh, S. S., Kumar, V., Hazra, K. K., Nath, C. P., Poonia, S., Malik, R. K., Bhattacharyya, R., & McDonald, A. (2019). Impact of conservation tillage in rice-based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma, 340, 104–114.

    Article  CAS  Google Scholar 

  • Nath, A. J., Brahma, B., Pathak, K., Das, A. K. (2016). Why should we preserve wetlands? Current Science, 110, 1619–1620.

    Google Scholar 

  • Nave, L. E., DeLyser, K., Butler-Leopold, P. R., Sprague, E., Daley, J., & Swanston, C. W. (2019). Effects of land use and forest management on soil carbon in the ecoregions of Maryland and adjacent eastern United States. Forest Ecology and Management, 448, 34–47.

    Article  Google Scholar 

  • Nave, L. E., Swanston, C. W., Mishra, U., & Nadelhoffer, K. J. (2013). Afforestation effects on soil carbon storage in the United States: A synthesis. Soil Science Society of America Journal, 77(3), 1035–1047.

    Article  CAS  Google Scholar 

  • Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma, 153(1–2), 231–240.

    Article  CAS  Google Scholar 

  • Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857–866.

    Article  Google Scholar 

  • Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2011). Fire effects on temperate forest soil C and N storage. Ecological Applications, 21(4), 1189–1201.

    Article  Google Scholar 

  • Nishimura, S., Yonemura, S., Sawamoto, T., Shirato, Y., Akiyama, H., Sudo, S., & Yagi, K. (2008). Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agriculture, Ecosystems & Environment, 125(1–4), 9–20.

    Google Scholar 

  • Nobilly, F., Bryant, R. H., McKenzie, B. A., & Edwards, G. R. (2013). Productivity of rotationally grazed simple and diverse pasture mixtures under irrigation in Canterbury. In Proceedings of the New Zealand Grassland Association (pp. 165–172).

    Google Scholar 

  • Noormets, A., & Nouvellon, Y. (2015). Introduction for special issue: Carbon, water and nutrient cycling in managed forests. Forest Ecology and Management, 355, 1–3.

    Article  Google Scholar 

  • Oliveira, F. C. C., Silva, I. R., Ferreira, G. W. D., Soares, E. M. B., Silva, S. R., & Silva, E. F. (2018). Contribution of Eucalyptus harvest residues and nitrogen fertilization to carbon stabilization in Ultisols of southern Bahia. Revista Brasileira de Ciência do Solo, 42.

    Google Scholar 

  • Örlander, G., Egnell, G., & Albrektson, A. (1996). Long-term effects of site preparation on growth in Scots pine. Forest Ecology and Management, 86(1–3), 27–37.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., & Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.

    Article  CAS  Google Scholar 

  • Panwar, P., Mahalingappa, D. G., Kaushal, R., Bhardwaj, D. R., Chakravarty, S., Shukla, G., Thakur, N. S., Chavan, S. B., Pal, S., Nayak, B. G., et al. (2022). Biomass production and carbon sequestration potential of different agroforestry systems in India: A critical review. Forests, 13, 1274. https://doi.org/10.3390/f13081274

    Article  Google Scholar 

  • Paradelo, R., Virto, I., & Chenu, C. (2015). Net effect of liming on soil organic carbon stocks: A review. Agriculture, Ecosystems & Environment, 202, 98–107.

    Article  CAS  Google Scholar 

  • Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126.

    Article  CAS  Google Scholar 

  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57.

    Article  CAS  Google Scholar 

  • Pereira, R. C., Hedley, M. J., Arbestain, M. C., Bishop, P., Enongene, K. E., & Otene, I. J. J. (2017). Evidence for soil carbon enhancement through deeper mouldboard ploughing at pasture renovation on a Typic Fragiaqualf. Soil Research, 56(2), 182–191.

    Article  Google Scholar 

  • Pereyra, A. S., & Mitsch, W. J. (2018). Methane emissions from freshwater cypress (Taxodium distichum) swamp soils with natural and impacted hydroperiods in Southwest Florida. Ecological Engineering, 114, 46–56.

    Article  Google Scholar 

  • Piirainen, S., Finér, L., & Starr, M. (2015). Changes in forest floor and mineral soil carbon and nitrogen stocks in a boreal forest after clear-cutting and mechanical site preparation. European Journal of Soil Science, 66(4), 735–743.

    Article  CAS  Google Scholar 

  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Global Change Biology, 17(7), 2415–2427.

    Article  Google Scholar 

  • Poeplau, C., Zopf, D., Greiner, B., Geerts, R., Korvaar, H., Thumm, U., Don, A., Heidkamp, A., & Flessa, H. (2018). Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agriculture, Ecosystems & Environment, 265, 144–155.

    Article  CAS  Google Scholar 

  • Pooniya, V., Shivay, Y. S., Rana, A., Nain, L., & Prasanna, R. (2012). Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. European Journal of Agronomy, 41, 28–37.

    Article  CAS  Google Scholar 

  • Powers, M. D., Kolka, R. K., Bradford, J. B., Palik, B. J., Fraver, S., & Jurgensen, M. F. (2012). Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecological Applications, 22(4), 1297–1307.

    Article  Google Scholar 

  • Prescott, C. E., Reid, A., Wu, S. Y., & Nilsson, M. C. (2017). Decomposition rates of surface and buried forest-floor material. Canadian Journal of Forest Research, 47(8), 1140–1144.

    Article  CAS  Google Scholar 

  • Pröll, G., Darabant, A., Gratzer, G., & Katzensteiner, K. (2015). Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps. European Journal of Forest Research, 134(2), 293–308.

    Article  Google Scholar 

  • Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345–365.

    Article  CAS  Google Scholar 

  • Qi, W., Li, H., Zhang, Q., & Zhang, K. (2019). Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China’s Han River basin. Ecological Engineering, 126, 64–73.

    Article  Google Scholar 

  • Rai, A. K., Ghosh, P. K., Ram, S. N., Singh, S., Kumar, S., Mahanta, S. K., Maity, S. B., Singh, J. P., Dixit, A. K., Tiwari, S. K., & Roy, A. K. (2013). Carbon sequestration in forage based land use systems (p. 52). Indian Grassland and Fodder Research Institute.

    Google Scholar 

  • Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1).

    Google Scholar 

  • Ramirez, J. I., Jansen, P. A., & Poorter, L. (2018). Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Forest Ecology and Management, 424, 406–419.

    Article  Google Scholar 

  • Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., & Paquette, A. (2017). Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20(11), 1414–1426.

    Article  Google Scholar 

  • Renforth, P., & Henderson, G. (2017). Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55(3), 636–674.

    Article  Google Scholar 

  • Rice, C. W. (2000). Soil organic C and N in rangeland soils under elevation CO2 and land management. In: Advances in Terrestrial Ecosystem Carbon Inventory, Measurements and Monitoring Conference in Raleigh, North Carolina (Vol. 5, pp. 15–24).

    Google Scholar 

  • Richardson, D. M., Carruthers, J., Hui, C., Impson, F. A., Miller, J. T., Robertson, M. P., Rouget, M., Le Roux, J. J., & Wilson, J. R. (2011). Human-mediated introductions of Australian acacias—A global experiment in biogeography. Diversity and Distributions, 17(5), 771–787.

    Article  Google Scholar 

  • Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 416, 617.

    Article  CAS  Google Scholar 

  • Schelhaas, M. J., Hengeveld, G., Moriondo, M., Reinds, G. J., Kundzewicz, Z. W., Ter Maat, H., & Bindi, M. (2010). Assessing risk and adaptation options to fires and windstorms in European forestry. Mitigation and Adaptation Strategies for Global Change, 15(7), 681–701.

    Article  Google Scholar 

  • Schmidt, H. P., Kammann, C., Niggli, C., Evangelou, M. W., Mackie, K. A., & Abiven, S. (2014). Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems & Environment, 191, 117–123.

    Article  CAS  Google Scholar 

  • Schuiling, R. D., & Krijgsman, P. (2006). Enhanced weathering: An effective and cheap tool to sequester CO2. Climatic Change, 74(1), 349–354.

    Article  CAS  Google Scholar 

  • Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A., & Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. Forest Ecology and Management, 367, 62–70.

    Article  Google Scholar 

  • Schuman, G. E., Booth, D. T., & Waggoner, J. W. (1990). Grazing reclaimed mined land seeded to native grasses in Wyoming. Journal of Soil and Water Conservation, 45(6), 653–657.

    Google Scholar 

  • Schuman, G. E., Janzen, H. H., & Herrick, J. E. (2002). Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 116(3), 391–396.

    Article  CAS  Google Scholar 

  • Sekaran, U., & Kumar, S. (2021). Responses of soil carbon storage, compaction, and biological properties under no-till and conventional-till systems. In Conservation agriculture: A sustainable approach for soil health and food security (pp. 359–378). Springer.

    Google Scholar 

  • Sha, C., Mitsch, W. J., Mander, Ü., Lu, J., Batson, J., Zhang, L., & He, W. (2011). Methane emissions from freshwater riverine wetlands. Ecological Engineering, 37(1), 16–24.

    Article  Google Scholar 

  • Sharifi, A., Kalin, L., Hantush, M. M., Isik, S., & Jordan, T. E. (2013). Carbon dynamics and export from flooded wetlands: A modeling approach. Ecological Modelling, 263, 196–210.

    Article  CAS  Google Scholar 

  • Sigua, G. C., & Coleman, S. W. (2010). Spatial distribution of soil carbon in pastures with cow-calf operation: Effects of slope aspect and slope position. Journal of Soils and Sediments, 10(2), 240–247.

    Article  CAS  Google Scholar 

  • Simola, H., Pitkänen, A., & Turunen, J. (2012). Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. European Journal of Soil Science, 63(6), 798–807.

    Article  CAS  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S., de Moraes Sa, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-Effects of no tillage. Agronomie, 22(7–8), 755–775.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., & Scholes, B. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 789–813.

    Article  CAS  Google Scholar 

  • Soimakallio, S., Saikku, L., Valsta, L., & Pingoud, K. (2016). Climate change mitigation challenge for wood utilization—The case of Finland. Environmental Science & Technology, 50(10), 5127–5134.

    Article  CAS  Google Scholar 

  • Steffens, M., Kölbl, A., Totsche, K. U., & Kögel-Knabner, I. (2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma, 143(1–2), 63–72.

    Google Scholar 

  • Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D., Reich, P. B., Nabuurs, G. J., de-Miguel, S., Zhou, M., Picard, N., & Herault, B. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408.

    Google Scholar 

  • Strukelj, M., Brais, S., & Paré, D. (2015). Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands. European Journal of Forest Research, 134(5), 737–754.

    Article  CAS  Google Scholar 

  • Sun, X., Wang, W., Razaq, M., & Sun, H. (2019). Effects of stand density on soil organic carbon storage in the top and deep soil layers of Fraxinus mandshurica plantations. Austrian Journal of Forest Science, 136(1), 27–44.

    Google Scholar 

  • Sykes, A. J., Macleod, M., Eory, V., Rees, R. M., Payen, F., Myrgiotis, V., Williams, M., Sohi, S., Hillier, J., Moran, D., & Manning, D. A. (2020). Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 26(3), 1085–1108.

    Article  Google Scholar 

  • Syphard, A. D., Brennan, T. J., & Keeley, J. E. (2014). The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire, 23(8), 1165–1175.

    Article  Google Scholar 

  • Tanentzap, A. J., & Coomes, D. A. (2012). Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter? Biological Reviews, 87(1), 72–94.

    Article  Google Scholar 

  • Tanwar, S. P., Singh, A. K., & Joshi, N. (2010). Changing environment and sustained crop production: A challenge for agronomy. Journal of Arid Legumes, 7(2), 91–100.

    Google Scholar 

  • Ti, C., Pan, J., Xia, Y., & Yan, X. (2012). A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry, 108, 381–394.

    Google Scholar 

  • Tilman, D., Reich, P., Phillips, H., Menton, M., Patel, A., Vos, E., Peterson, D., & Knops, J. (2000). Fire suppression and ecosystem carbon storage. Ecology, 81(10), 2680–2685.

    Article  Google Scholar 

  • Timmons, D. S., Buchholz, T., & Veeneman, C. H. (2016). Forest biomass energy: Assessing atmospheric carbon impacts by discounting future carbon flows. GCB Bioenergy, 8(3), 631–643.

    Article  CAS  Google Scholar 

  • Trost, B., Prochnow, A., Drastig, K., Meyer-Aurich, A., Ellmer, F., & Baumecker, M. (2013). Irrigation, soil organic carbon and N2O emissions. A review. Agronomy for Sustainable Development, 33(4), 733–749.

    Article  CAS  Google Scholar 

  • Truax, B., Fortier, J., Gagnon, D., & Lambert, F. (2018). Planting density and site effects on stem dimensions, stand productivity, biomass partitioning, carbon stocks and soil nutrient supply in hybrid poplar plantations. Forests, 9(6), 293.

    Article  Google Scholar 

  • Tu, C., He, T., Lu, X., Luo, Y., & Smith, P. (2018). Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. CATENA, 163, 204–209.

    Article  CAS  Google Scholar 

  • Turner, J., Lambert, M., & Turner, S. (2017). Long term carbon and nutrient dynamics within two small radiata pine catchments. Forest Ecology and Management, 389, 1–14.

    Article  Google Scholar 

  • UNFCCC UN. (2009). Kyoto protocol reference manual on accounting of emissions and assigned amount. eSocialSciences.

    Google Scholar 

  • Valdés-Correcher, E., Sitters, J., Wassen, M., Brion, N., & Olde, V. H. (2019). Herbivore dung quality affects plant community diversity. Scientific Reports, 9(1), 1–6.

    Article  Google Scholar 

  • Van Miegroet, H., & Olsson, M. (2011). Ecosystem disturbance and soil organic carbon—A review. In Soil carbon in sensitive European ecosystems: From science to land management (pp. 85–117).

    Google Scholar 

  • Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., Rose, T. J., Rose, M. T., Kimber, S. W., Morris, S., Cozzolino, D., & Araujo, J. R. (2017). Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 7(5), 371–376.

    Article  Google Scholar 

  • Vanguelova, E. I., Crow, P., Benham, S., Pitman, R., Forster, J., Eaton, E. L., & Morison, J. I. L. (2019). Impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) afforestation on the carbon stocks of peaty gley soils—A chronosequence study in the north of England. Forestry: An International Journal of Forest Research, 92(3), 242–252.

    Google Scholar 

  • Vanguelova, E. I., Pitman, R., Benham, S., Perks, M., & Morison, J. I. (2017). Impact of tree stump harvesting on soil carbon and nutrients and second rotation tree growth in Mid-Wales, UK. Open Journal of Forestry, 7(01), 58.

    Article  Google Scholar 

  • Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E., Wiggins, E. B., & Randerson, J. T. (2017). Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7), 529–534.

    Article  Google Scholar 

  • Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18.

    Article  Google Scholar 

  • Vesterdal, L., Dalsgaard, M., Felby, C., Raulund-Rasmussen, K., & Jørgensen, B. B. (1995). Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecology and Management, 77(1–3), 1–10.

    Article  Google Scholar 

  • Vesterdal, L., Ritter, E., & Gundersen, P. (2002). Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169(1–2), 137–147.

    Article  Google Scholar 

  • Villa, J. A., & Bernal, B. (2018). Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework. Ecological Engineering, 114, 115–128.

    Article  Google Scholar 

  • Wan, X., Xiao, L., Vadeboncoeur, M. A., Johnson, C. E., & Huang, Z. (2018). Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. Forest Ecology and Management, 408, 9–15.

    Article  Google Scholar 

  • Wang, H., Liu, S., Wang, J., Shi, Z., Lu, L., Zeng, J., Ming, A., Tang, J., & Yu, H. (2013). Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300, 4–13.

    Article  Google Scholar 

  • Wei, X., Shao, M., Gale, W., & Li, L. (2014). Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4(1), 1–6.

    Article  CAS  Google Scholar 

  • Were, D., Kansiime, F., Fetahi, T., Cooper, A., & Jjuuko, C. (2019). Carbon sequestration by wetlands: A critical review of enhancement measures for climate change mitigation. Earth Systems and Environment, 3, 327–340.

    Google Scholar 

  • Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y., Mudge, P. L., Pereira, R. C., Kirschbaum, M. U., McNally, S. R., Beare, M. H., & Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems & Environment, 265, 432–443.

    Article  Google Scholar 

  • Wiesmeier, M., Mayer, S., Burmeister, J., Hübner, R., & Kögel-Knabner, I. (2020). Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma, 369, 114333.

    Article  CAS  Google Scholar 

  • Wiesmeier, M., Prietzel, J., Barthold, F., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., von Lützow, M., & Kögel-Knabner, I. (2013). Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—Implications for carbon sequestration. Forest Ecology and Management, 295, 162–172.

    Article  Google Scholar 

  • Xu, L., Wen, D., Zhu, J., & He, N. (2017). Regional variation in carbon sequestration potential of forest ecosystems in China. Chinese Geographical Science, 27(3), 337–350.

    Article  Google Scholar 

  • Yadav, M. R., Parihar, C. M., Kumar, R., Yadav, R. K., Jat, S. L., Singh, A. K., Ram, H., Meena, R. K., Singh, M., Meena, V. K., & Yadav, N. (2017). Conservation agriculture and soil quality—An overview. International Journal of Current Microbiology and Applied Sciences, 6, 1–28.

    Google Scholar 

  • Yayneshet, T., Eik, L. O., & Moe, S. R. (2009). Seasonal variations in the chemical composition and dry matter degradability of exclosure forages in the semi-arid region of northern Ethiopia. Animal Feed Science and Technology, 148(1), 12–33.

    Article  CAS  Google Scholar 

  • Zewdie, M. (2008). Temporal changes of biomass production, soil properties and ground flora in Eucalyptus globulus plantations in the central highlands of Ethiopia (Vol. 2008, No. 2008, p. 18).

    Google Scholar 

  • Zhang, M., Huang, X., Chuai, X., Yang, H., Lai, L., & Tan, J. (2015). Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Scientific Reports, 5(1), 1–3.

    Google Scholar 

  • Zhang, X., Guan, D., Li, W., Sun, D., Jin, C., Yuan, F., Wang, A., & Wu, J. (2018). The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. Forest Ecology and Management, 429, 36–43.

    Article  Google Scholar 

  • Zhao, F., Kang, D., Han, X., Yang, G., Feng, Y., & Ren, G. (2015). Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 74, 415–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanumoy Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, T., Samui, S., Dey, A., Ankireddypalli, J. (2024). Soil Carbon Sequestration in the Context of Climate Change. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_3

Download citation

Publish with us

Policies and ethics