Skip to main content

Physiological and Molecular Bases of Drought and Heat Tolerance in Pearl Millet

  • Chapter
  • First Online:
Pearl Millet in the 21st Century

Abstract

Pearl millet is one of the most important sources of nutrition for millions of people in arid and semi-arid areas in Africa and Asia. Farmers have had, throughout its domestication, to select cultivars adapted to their environments. So, pearl millet appears as an interesting crop model to study drought adaptation. However, current and future climatic changes pose challenges to its cropping sustainability. Drought and heat are the main factors of climate change. To accelerate pearl millet adaptation and improve its productivity to cope with climate change, its mechanisms of adaptation must be dissected. Here, we review the state of research on the physiological and molecular bases of pearl millet adaptation to drought and heat. However, pearl millet remains a neglected crop, and progress in research remains to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari U, Nejadhashemi AP, Woznicki SA (2015) Climate change and eastern Africa: a review of impact on major crops. Food Energy Secur 4:110–132

    Article  Google Scholar 

  • Ahn Y, Zimmerman JL (2006) Introduction of the carrot HSP17. 7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ 29:95–104

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Alam I, Sharmin SA, Kim K-H et al (2010) Proteome analysis of soybean roots subjected to short-term drought stress. Plant and Soil 333:491–505

    Article  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Al-Khatib K, Paulsen GM (1999) High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci 39:119–125

    Article  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV et al (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Alqudah AM, Samarah NH, Mullen RE (2011) Drought stress effect on crop pollination, seed set, yield and quality. In: Lichtfocus E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Springer, Dordrecht, pp 193–213

    Chapter  Google Scholar 

  • Alves AA, Setter TL (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot 94:605–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum S, Wang L, Farooq M et al (2011a) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci 197:296–301

    Article  CAS  Google Scholar 

  • Anjum S, Wang L, Farooq M et al (2011b) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Annerose D (1990) Recherches sur les mécanismes physiologiques d’adaptation à la sécheresse. Application au cas de l’arachide (Arachis hypogea l.) cultivée au Sénégal, Thèse de doctorat, Université Paris VII

    Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C et al (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl. Front Plant Sci 8:1–17

    Article  Google Scholar 

  • Aparna K, Hash C, Yadav R, Vadez V (2014) Seed number and 100-seed weight of pearl millet (Pennisetum glaucum L.) respond differently to low soil moisture in genotypes contrasting for drought tolerance. J Agron Crop Sci 200:119–131

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Arya RK, Yadav H (2009) Stability of grain yield and its contributing traits in white and grey grain hybrids of pearl millet (Pennisetum glaucum). Indian J Agric Sci 79:941–944

    Google Scholar 

  • Arya R, Yadav H, Yadav A, Singh M (2010) Effect of environment on yield and its contributing traits in pearl millet. Forage Res 36:176–180

    Google Scholar 

  • Arya R, Singh M, Yadav A et al (2014) Advances in pearl millet to mitigate adverse environment conditions emerged due to global warming. Forage Res 40:57–70

    Google Scholar 

  • Ashraf MY, Azmi AR, Khan AH, Ala S (1994) Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat [Triticum aestivum L.]. Acta Physiol Plant 16(3):185–191

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389–394

    Article  CAS  Google Scholar 

  • Assefa Y, Staggenborg SA, Prasad PV (2010) Grain sorghum water requirement and responses to drought stress: a review. Crop Manage 9:1–11

    Article  Google Scholar 

  • Assmann SM, Snyder JA, Lee YJ (2000) ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ 23:387–395

    Article  CAS  Google Scholar 

  • Bai Y, Han X, Wu J et al (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Bajji M, Lutts S, Kinet J-M (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    Article  CAS  PubMed  Google Scholar 

  • Balling RC, Cerveny RS (2003) Compilation and discussion of trends in severe storms in the United States: Popular perception v. climate reality. Nat Hazards 29:103–112

    Article  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    Article  PubMed  Google Scholar 

  • Bates B, Kundzewicz Z, Wu S, Palutikof J (eds) (2008) Climate change and water. Intergovernmental Panel on Climate Change Secretariat, Geneva

    Google Scholar 

  • Behnam B, Iuchi S, Fujita M et al (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20:315–324. https://doi.org/10.1093/DNARES/DST012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Bhattarai B, Singh S, West CP et al (2020) Water depletion pattern and water use efficiency of forage sorghum, pearl millet, and corn under water limiting condition. Agric Water Manag 238:106206. https://doi.org/10.1016/j.agwat.2020.106206

    Article  Google Scholar 

  • Bidinger F, Raju D (2000) Response to selection for increased individual grain mass in pearl millet. Crop Sci 40:68–71

    Article  Google Scholar 

  • Bidinger FR, Serraj R, Rizvi SMH et al (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crop Res 94:14–32. https://doi.org/10.1016/j.fcr.2004.11.006

    Article  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agr Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2011) Plant water relations, plant stress and plant production. In: Blum A (ed) Plant breeding for water-limited environments. Springer, New York, pp 11–52

    Chapter  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    Article  CAS  PubMed  Google Scholar 

  • Blum A, Sullivan C (1986) The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann Bot 57:835–846

    Article  Google Scholar 

  • Bois J-F (1993) Effets de la contrainte hydrique sur la photosynthèse du mil. In: Hamon S (ed) Le mil en Afrique, diversité génétique et agro-physiologique: potentialités et contraintes pour l’amélioration génétique et l’agriculture. Orstom, Paris, pp 191–198

    Google Scholar 

  • Boyer J, Westgate M (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Brown C, Lall U (2006) Water and economic development: the role of variability and a framework for resilience. Nat Resour Forum 30(4):306–317

    Article  Google Scholar 

  • Buckley TN (2019) How do stomata respond to water status? New Phytol 224:21–36

    Article  PubMed  Google Scholar 

  • Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M (2020) Root growth adaptation to climate change in crops. Front Plant Sci 11:544. https://doi.org/10.3389/fpls.2020.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camejo D, Rodríguez P, Morales MA et al (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Carvajal M, Cooke D, Clarkson D (1996) Plasma membrane fluidity and hydraulic conductance in wheat roots: interactions between root temperature and nitrate or phosphate deprivation. Plant Cell Environ 19:1110–1114

    Article  CAS  Google Scholar 

  • Chanwala J, Satpati S, Dixit A et al (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genomics 21:1–16. https://doi.org/10.1186/s12864-020-6622-0

    Article  CAS  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves M, Oliveira M (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jiang J-G (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Article  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall A (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crop Res 95:305–315

    Article  Google Scholar 

  • Chimungu JG, Maliro MF, Nalivata PC et al (2015) Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). Field Crop Res 171:86–98

    Article  Google Scholar 

  • Chopart J-L, Siband P (1999) Development and validation of a model to describe root length density of maize from root counts on soil profiles. Plant and Soil 214:61–74

    Article  CAS  Google Scholar 

  • Chopart J-L, Rodrigues SR, De Azevedo MC, de Conti MC (2008a) Estimating sugarcane root length density through root mapping and orientation modelling. Plant and Soil 313:101–112

    Article  CAS  Google Scholar 

  • Chopart J-L, Sine B, Dao A, Muller B (2008b) Root orientation of four sorghum cultivars: application to estimate root length density from root counts in soil profiles. Plant Root 2:67–75

    Article  Google Scholar 

  • Choudhary S, Guha A, Kholova J et al (2020) Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions. Plant Sci 295:110297. https://doi.org/10.1016/j.plantsci.2019.110297

    Article  CAS  PubMed  Google Scholar 

  • Christidis N, Stott PA, Jones GS et al (2012) Human activity and anomalously warm seasons in Europe. Int J Climatol 32:225–239

    Article  Google Scholar 

  • Christopher J, Manschadi A, Hammer G, Borrell A (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agr Res 59:354–364

    Article  Google Scholar 

  • Clotault J, Thuillet A-C, Buiron M et al (2012) Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 29:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker T, Quin D, Plattner G et al (eds) Climate change 2013-the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Condon AG, Richards R, Rebetzke G, Farquhar G (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    PubMed  Google Scholar 

  • Cooper P, Rao K, Singh P et al (2009) Farming with current and future climate risk: advancing a ‘Hypothesis of Hope’ for rainfed agriculture in the semi-arid tropics. J SAT Agric Res 7:1–19

    Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker N (ed) Photosynthesis and the environment. Advances in photosynthesis and respiration, vol 5. Springer, Dordrecht, pp 347–366

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craufurd P, Peacock J (1993) Effect of heat and drought stress on sorghum (Sorghum bicolor). II Grain yield. Exp Agric 29:77–86

    Article  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai A, Lamb PJ, Trenberth KE et al (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331

    Article  Google Scholar 

  • De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  Google Scholar 

  • Debieu M, Kanfany G, Laplaze L (2017) Pearl millet genome: lessons from a tough crop. Trends Plant Sci 22(11):911–913

    Article  CAS  PubMed  Google Scholar 

  • Debieu M, Sine B, Passot S et al (2018) Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PloS One 13:1–19. https://doi.org/10.1371/journal.pone.0201635

    Article  CAS  Google Scholar 

  • Diack O, Kanfany G, Gueye MC et al (2020) GWAS unveils features between early-and late-flowering pearl millets. BMC Genomics 21:1–11. https://doi.org/10.21203/rs.3.rs-25381/v1

    Article  Google Scholar 

  • Djanaguiraman M, Perumal R, Ciampitti I et al (2018) Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ 41:993–1007

    Article  CAS  PubMed  Google Scholar 

  • Dreesen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30

    Article  Google Scholar 

  • Dudhate A, Shinde H, Tsugama D et al (2018) Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 13:1–14. https://doi.org/10.1371/journal.pone.0195908

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S et al (2016a) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S et al (2016b) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Basra S, Wahid A et al (2008) Physiological role of exogenously applied glycine betaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Sustain Agric 29:185–212

    Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Fauchereau N, Trzaska S, Rouault M, Richard Y (2003) Rainfall variability and changes in southern Africa during the 20th century in the global warming context. Nat Hazards 29:139–154

    Article  Google Scholar 

  • Faye A, Sine B, Chopart J-L et al (2019) Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PloS One 14:e0214182. https://doi.org/10.1371/journal.pone.0214182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer G, Shah MN, Tubiello F, Van Velhuizen H (2005a) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc B Biol Sci 360:2067–2083

    Article  Google Scholar 

  • Fischer R, Sayre K, Reynolds M (2005b) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agron J 97:1062–1071

    Article  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J et al (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Ford KL, Cassin A, Bacic AF (2011) Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci 2:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Forster B, Ellis R, Moir J et al (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168

    Article  Google Scholar 

  • Ghatak A, Chaturvedi P, Nagler M et al (2016) Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br.(Pearl millet). J Proteomics 143:122–135

    Article  CAS  PubMed  Google Scholar 

  • Ghatak A, Chaturvedi P, Bachmann G et al (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci 11:600278

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Golombek S (2003) Effect of drought on gas exchange and carbon metabolism in pearl millet. Technological and Institutional Innovations for Sustainable Rural Development. Deutshe Tropentag, Göttingen, 8–10 October 2003, pp 339–348

    Google Scholar 

  • Govindaraj M, Shanmugasundaram P, Sumathi P, Muthiah A (2010) Simple, rapid and cost effective screening method for drought resistant breeding in pearl millet. Electron J Plant Breed 1:590–599

    Google Scholar 

  • Grondin A, Mauleon R, Vadez V, Henry A (2016) Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant Cell Environ 39:347–365

    Article  CAS  PubMed  Google Scholar 

  • Grondin A, Affortit P, Tranchant-Dubreuil C et al (2020) Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS One 15:e0233481. https://doi.org/10.1371/journal.pone.0233481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Rai K, Singh P et al (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L.(R.) Br.). Field Crop Res 171:41–53

    Article  Google Scholar 

  • Gupta S, Ameta V, Pareek S, et al. (2016) Genetic enhancement for flowering period heat tolerance in pearl millet (Pennisetum glaucum L.(R.) Br.). In: 7th international crop science congress, Beijing. http://oar.icrisat.org/9757/1/Page1.pdf. Accessed 15 Jul 2021

  • Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12:457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckathorn SA, DeLucia EH (1991) Effect of leaf rolling on gas exchange and leaf temperature of Andropogon gerardii and Spartina pectinata. Bot Gaz 152:263–268

    Article  Google Scholar 

  • Heckathorn SA, Giri A, Mishra S, Bista D (2013) Heat stress and roots. In: Climate change and plant abiotic stress tolerance. Wiley, Hoboken, pp 109–136

    Chapter  Google Scholar 

  • Henry S, Divol F, Bettembourg M et al (2016) Immunoprofiling of rice root cortex reveals two cortical subdomains. Front Plant Sci 6:1139. https://doi.org/10.3389/fpls.2015.01139

    Article  PubMed  PubMed Central  Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  CAS  PubMed  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN et al (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li Y, Li C et al (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    Article  CAS  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Stamp P (2008) Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. Eur J Agron 28:178–185

    Article  CAS  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil 318:311–325

    Article  CAS  Google Scholar 

  • Izanloo A, Condon AG, Langridge P et al (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadish SK (2020) Heat stress during flowering in cereals–effects and adaptation strategies. New Phytol 226:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Antala TJ, Mandavia M et al (2018) Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep 8:1–16. https://doi.org/10.1038/s41598-018-21560-1

  • Jia W, Zhang J (2008) Stomatal movements and long-distance signaling in plants. Plant Signal Behav 3:772–777

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung H, Choi Y, Oh J, Lim G (2002) Recent trends in temperature and precipitation over South Korea. Int J Climatol 22:1327–1337

    Article  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Article  Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security–a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch J, Serraj R (2006) Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crop Res 95:171–181

    Article  Google Scholar 

  • Katerji N, Tardieu F, Bethenod O, Quetin P (1994) Behavior of maize stem diameter during drying cycles: comparison of two methods for detecting water stress. Crop Sci 34:165–169

    Article  Google Scholar 

  • Khalifa F, Ong C (1990) Effect of supra-optimal temperatures on germination of pearl millet (Pennisetum glaucum (L) R. BR.) hybrids. Ann Arid Zone 29:279–288

    Google Scholar 

  • Khan MB, Hussain N, Iqbal M (2001) Effect of water stress on growth and yield components of maize variety YHS 202. J Res Sci 12:15–18

    Google Scholar 

  • Khan H, Paull J, Siddique K, Stoddard F (2010) Faba bean breeding for drought-affected environments: A physiological and agronomic perspective. Field Crop Res 115:279–286

    Article  Google Scholar 

  • Kholová J, Vadez V (2013) Water extraction under terminal drought explains the genotypic differences in yield, not the antioxidant changes in leaves of pearl millet (Pennisetum glaucum). Funct Plant Biol 40:44–53. https://doi.org/10.1071/FP12181

    Article  Google Scholar 

  • Kholová J, Hash CT, Kakkera A et al (2010) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J Exp Bot 61:369–377

    Article  PubMed  Google Scholar 

  • Kholová J, Zindy P, Malayee S et al (2016) Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R. Br.). Funct Plant Biol 43:423–437

    Article  PubMed  Google Scholar 

  • Kirkegaard J, Lilley J, Howe G, Graham J (2007) Impact of subsoil water use on wheat yield. Aust J Agr Res 58:303–315

    Article  Google Scholar 

  • Kirtman B, Power SB, Adedoyin AJ et al (2013) Near-term climate change: projections and predictability. In: Stocker T, Quin D, Plattner G et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 953–1028

    Google Scholar 

  • Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett 7:034032. https://doi.org/10.1088/1748-9326/7/3/034032

    Article  Google Scholar 

  • Komatsu S, Kamal AH, Hossain Z (2014) Wheat proteomics: proteome modulation and abiotic stress acclimation. Front Plant Sci 5:684. https://doi.org/10.3389/fpls.2014.00684

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Murty MV, Aragones DV (2000) Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci Plant Nutr 46:721–732

    Article  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sachdeva S, Bhat K, Vats S (2018) Plant responses to drought stress: physiological, biochemical and molecular basis. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer, India, pp 1–25

    Google Scholar 

  • Kusaka M, Lalusin AG, Fujimura T (2005a) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14

    Article  CAS  Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005b) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    Article  CAS  Google Scholar 

  • Lakis G, Navascués M, Rekima S et al (2012) Evolution of neutral and flowering genes along pearl millet (Pennisetum glaucum) domestication. PloS One 7:e36642. https://doi.org/10.1371/journal.pone.0036642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Ma B, Xiong Y, Zhang W (2017) Morphological and physiological responses of different wheat genotypes to chilling stress: a cue to explain yield loss. J Sci Food Agric 97:4036–4045

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Müller C et al (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130–1136

    Article  Google Scholar 

  • Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206

    Article  CAS  Google Scholar 

  • Ludlow M, Muchow R (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Ma C, Wang Z, Kong B, Lin T (2013) Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul 70:275–285

    Article  CAS  Google Scholar 

  • Maiti R, Bidinger F (1981) Growth and development of the pearl millet plant. Research Bulletin no. 6. ICRISAT, Patancheru

    Google Scholar 

  • Manschadi A, Christopher J, Hammer G, Devoil P (2010) Experimental and modelling studies of drought-adaptive root architectural traits in wheat (Triticum aestivum L.). Plant Biosyst 144:458–462

    Article  Google Scholar 

  • Maroco JP, Pereira JS, Chaves MM (1997) Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Funct Plant Biol 24:381–387

    Article  Google Scholar 

  • Matsuura A, Inanaga S, Sugimoto Y (1996) Mechanism of interspecific differences among four gramineous crops in growth response to soil drying. Jpn J Crop Sci 65:352–360

    Article  CAS  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Mortlock MY, Hammer GL (2000) Genotype and water limitation effects on transpiration efficiency in sorghum. J Crop Prod 2:265–286

    Article  Google Scholar 

  • Muchow R (1989) Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment I. Yield potential. Field Crops Res 20:191–205

    Article  Google Scholar 

  • Niang I, Ruppel OC, Abdrabo MA et al (2014) Africa climate change 2014: impacts, adaptation, and vulnerability: part B: regional aspects. In: Barros V, Field C, Dokken D et al (eds) Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1199–1266

    Google Scholar 

  • Nio S, Cawthray G, Wade L, Colmer T (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137

    Article  CAS  PubMed  Google Scholar 

  • Nitnavare RB, Yeshvekar RK, Sharma KK et al (2016) Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C 4 cereal plant from the semi-arid tropics. Mol Biol Rep 43:861–870

    Article  CAS  PubMed  Google Scholar 

  • O’toole J, Cruz R, Singh T (1979) Leaf rolling and transpiration. Plant Sci Lett 16:111–114

    Article  Google Scholar 

  • Ocheltree T, Nippert J, Prasad PV (2014) Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant Cell Environ 37:132–139

    Article  CAS  PubMed  Google Scholar 

  • Ogbaga CC, Stepien P, Johnson GN (2014) Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol Plant 152:389–401

    Article  CAS  PubMed  Google Scholar 

  • Omarova E, Bogdanova E, Polimbetova F (1995) Regulation of water-loss by the leaves of soft winter-wheat with different organization of leaf structure. Russ J Plant Physiol 42:383–385

    CAS  Google Scholar 

  • van Oosterom E, Kulathunga M, Deifel K et al (2021) Dissecting and modelling the comparative adaptation to water limitation of sorghum and maize: role of transpiration efficiency, transpiration rate and height. In Silico Plants 3:diaa012

    Article  Google Scholar 

  • Ousseini I, Bakasso Y, Kane N et al (2017) Myosin XI is associated with fitness and adaptation to aridity in wild pearl millet. Heredity 119:88–94. https://doi.org/10.1038/hdy.2017.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent B, Hachez C, Redondo E et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012. https://doi.org/10.1104/pp.108.130682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passot S (2016) Exploring pearl millet root system and its outcome for drought tolerance, Thèse de doctorat, Université Montpellier

    Google Scholar 

  • Passot S, Gnacko F, Moukouanga D et al (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:829. https://doi.org/10.3389/fpls.2016.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Passot S, Moreno-Ortega B, Moukouanga D et al (2018) A new phenotyping pipeline reveals three types of lateral roots and a random branching pattern in two cereals. Plant Physiol 177:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Chaves M (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  PubMed  Google Scholar 

  • Pinheiro C, Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Prado K, Maurel C (2013) Regulation of leaf hydraulics: from molecular to whole plant levels. Front Plant Sci 4:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad PV, Djanaguiraman M (2011) High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct Plant Biol 38:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Prasad PV, Djanaguiraman M (2014) Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct Plant Biol 41:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Prasad PV, Boote KJ, Vu JC, Allen LH Jr (2004) The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Sci 166:1565–1573

    Article  CAS  Google Scholar 

  • Prasad PV, Boote K, Allen L Jr et al (2006a) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95:398–411

    Article  Google Scholar 

  • Prasad PV, Boote KJ, Allen LH Jr (2006b) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Prasad PV, Staggenborg S, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes, vol 1. ASA, CSSA, Madison, pp 301–355

    Google Scholar 

  • Prasad PV, Djanaguiraman M, Perumal R, Ciampitti IA (2015) Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Front Plant Sci 6:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad PV, Bheemanahalli R, Jagadish SK (2017) Field crops and the fear of heat stress—opportunities, challenges and future directions. Field Crop Res 200:114–121

    Article  Google Scholar 

  • Qaseem MF, Qureshi R, Shaheen H (2019) Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci 96:15354–15361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong S-W, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhouane L (2008) Caractéristiques hydriques du mil (Pennisetum glaucum (L.) R. Br.) en présence de contraintes hydriques. C R Biol 331:206–214

    Article  PubMed  Google Scholar 

  • Radhouane L (2009) La photosynthèse du mil (Pennisetum glaucum (L.) R. Br.) en présence de contrainte hydrique et saline. J Agric Environ Int Devel 103:185–200

    Google Scholar 

  • Radhouane L (2013) Les échanges gazeux d’un écotype autochtone de mil (Pennisetum glaucum LR Br.) au cours d’un dessèchement hydrique. J Anim Plants Sci 2:2552–2566

    Google Scholar 

  • Rebouillat J, Dievart A, Verdeil J-L et al (2009) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T et al (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254

    Article  CAS  PubMed  Google Scholar 

  • Reddy KS, Sekhar KM, Reddy AR (2017a) Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity–photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiol 37:926–937. https://doi.org/10.1093/treephys/tpx051

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Tharanya M, Sivasakthi K et al (2017b) Molecular cloning and expression analysis of aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits. Plant Sci 265:167–176

    Article  CAS  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, Jacquemot M-P et al (2004) Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol Biochem 42:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Richards R, Passioura J (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agr Res 40:943–950

    Article  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostamza M, Richards R, Watt M (2013) Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann Bot 112:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidou AA, Mariac C, Luong V et al (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182(3):899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Salack S, Muller B, Gaye AT (2011) Rain-based factors of high agricultural impacts over Senegal. Part I: integration of local to sub-regional trends and variability. Theor Appl Climatol 106:1–22

    Article  Google Scholar 

  • Salack S, Muller B, Gaye AT et al (2012a) Analyses multi-échelles des pauses pluviométriques au Niger et au Sénégal. Sécheresse 23:3–13. https://doi.org/10.1684/sec.2012.0335

    Article  Google Scholar 

  • Salack S, Sultan B, Oettli P et al (2012b) Representation of rainfall in regional climate models and application to millet yield estimations in Senegal. Science and changements planétaires/Sécheresse 23:14–23. https://doi.org/10.1684/sec.2012.0332

    Article  Google Scholar 

  • Sanchez A, Subudhi P, Rosenow D, Nguyen H (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Sanders GJ, Arndt SK (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, pp 199–229

    Chapter  Google Scholar 

  • Sarieva G, Kenzhebaeva S, Lichtenthaler H (2010) Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russ J Plant Physiol 57:28–36

    Article  CAS  Google Scholar 

  • Savin R, Nicolas ME (1996) Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Funct Plant Biol 23:201–210

    Article  Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schittenhelm S, Schroetter S (2014) Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids. J Agron Crop Sci 200:46–53

    Article  CAS  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E et al (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Sekhon H, Singh G, Sharma P, Bains T (2010) Water use efficiency under stress environments. In: Yadav S, Mc Neil D, Redden R et al (eds) Climate change and management of cool season grain legume crops. Springer, New York, pp 207–227

    Chapter  Google Scholar 

  • Serraj R, Hash CT, Rizvi SMH et al (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337. https://doi.org/10.1626/pps.8.334

    Article  Google Scholar 

  • Shah N, Paulsen G (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Shangguan Z, Shao M, Dyckmans J (1999) Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought. J Plant Physiol 154:753–758

    Article  CAS  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers F et al (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493

    Article  Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agron J 93:263–270

    Article  Google Scholar 

  • Slama A (2002) Étude comparative de la contribution des différentes parties du plant du blé dur dans la contribution du rendement en grains en irrigué et en conditions de déficit hydrique. Thèse de doctorat en biologie, faculté des sciences de Tunis

    Google Scholar 

  • Slatyer R (1973) Effects of short periods of water stress on leaf photosynthesis. In: Slatyer R (ed) Plant response to climatic factors proceedings of theuppsala symposium. UNESCO, Paris, pp 271–276

    Google Scholar 

  • Soegaard H, Boegh E (1995) Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. J Hydrol 166:265–282

    Article  Google Scholar 

  • Solomon S, Manning M, Marquis M et al (eds) (2007) Climate change 2007-the physical science basis: Working group I, contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Steele K, Price A, Witcombe J et al (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126:101–108

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Biol 52:847–875

    Article  CAS  Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC et al (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdiscip Rev Clim Change 1:192–211

    Article  Google Scholar 

  • Sultan B, Gaetani M (2016) Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci 7:1262

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan B, Roudier P, Quirion P et al (2013) Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ Res Lett 8(1):014040

    Article  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    Article  CAS  PubMed  Google Scholar 

  • Takayuki Y, Hiroyuki K, Takashi M, Hiroshi M (2013) Simultaneous Transcriptome Analysis of Sorghum and Bipolaris sorghicola by Using RNA-seq in Combination with De Novo Transcriptome Assembly. PLoS ONE 8(4):e62460. https://doi.org/10.1371/journal.pone.0062460

    Article  CAS  Google Scholar 

  • Tardieu F, Reymond M, Hamard P et al (2000) Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J Exp Bot 51:1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703. https://doi.org/10.1029/2005GL022760

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P et al (2007) Observations. Surface and atmospheric climate change. In: Solomon S, Qin M, Manning Z et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Ahmad A, Khaliq T, Akhtar J (2017) Recognizing production options for pearl millet in Pakistan under changing climate scenarios. J Integr Agric 16:762–773

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Hash C et al (2011) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62:645–655

    Article  Google Scholar 

  • Vadez V, Hash T, Kholova J (2012) II. 1.5 Phenotyping pearl millet for adaptation to drought. Front Physiol 3:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Kholová J, Yadav RS, Hash CT (2013a) Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant and Soil 371:447–462

    Article  CAS  Google Scholar 

  • Vadez V, Kholova J, Zaman-Allah M, Belko N (2013b) Water: the most important ‘molecular’ component of water stress tolerance research. Funct Plant Biol 40:1310–1322

    Article  PubMed  Google Scholar 

  • Vadez V, Kholova J, Medina S et al (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65:6141–6153

    Article  CAS  PubMed  Google Scholar 

  • Vadez V, Choudhary S, Kholová J et al (2021) Transpiration efficiency: insights from comparisons of C4 cereal species. J Exp Bot 72:5221–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varney GT, Canny MJ, Mccully ME (1991) The branch roots of Zea. I. First order branches, their number, sizes and division into classes. Ann Bot 67:357–364

    Article  Google Scholar 

  • Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:1–23

    Article  Google Scholar 

  • Vigouroux Y, Cédric M, de Mita S et al (2011) Selection for earlier flowering crop associated with climatic variations in the Sahel. PloS One 6:1–9. https://doi.org/10.1371/journal.pone.0019563

    Article  CAS  Google Scholar 

  • Vijayalakshmi T, Varalaxmi Y, Jainender S et al (2012) Physiological and biochemical basis of water-deficit stress tolerance in pearl millet hybrid and parents. Am J Plant Sci 3(12):1730–1740

    Article  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Close T (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wallace J, Lloyd C, Sivakumar M (1993) Measurements of soil, plant and total evaporation from millet in Niger. Agric For Meteorol 63:149–169

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Vanga SK, Saxena R et al (2018) Effect of climate change on the yield of cereal crops: a review. Climate 6:41

    Article  Google Scholar 

  • Wasaya A, Zhang X, Fang Q, Yan Z (2018) Root phenotyping for drought tolerance: a review. Agronomy 8:24. https://doi.org/10.3390/agronomy8110241

    Article  Google Scholar 

  • Wasson AP, Richards R, Chatrath R et al (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498

    Article  CAS  PubMed  Google Scholar 

  • Watt M, Magee LJ, McCully ME (2008) Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. New Phytol 178:135–146

    Article  PubMed  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C et al (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    Article  CAS  PubMed  Google Scholar 

  • Wilson J, Sanogo M, Nutsugah S et al (2008) Evaluation of pearl millet for yield and downy mildew resistance across seven countries in sub-Saharan Africa. Afr J Agric Res 3(5):371–378

    Google Scholar 

  • Winkel T, Renno J-F, Payne W (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J Exp Bot 48:1001–1009

    Article  CAS  Google Scholar 

  • Winkel T, Payne W, Renno J (2001) Ontogeny modifies the effects of water stress on stomatal control, leaf area duration and biomass partitioning of Pennisetum glaucum. New Phytol 149:71–82

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Ma B, Whalen JK (2018) Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Adv Agron 151:87–157

    Article  Google Scholar 

  • Xin Z, Aiken R, Burke J (2009) Genetic diversity of transpiration efficiency in sorghum. Field Crop Res 111:74–80

    Article  Google Scholar 

  • Xiong L, Wang R-G, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhou G (2005a) Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiol Plant 123:272–280

    Article  CAS  Google Scholar 

  • Xu Z-Z, Zhou G-S (2005b) Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil 269:131–139

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Hash C, Bidinger FR et al (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR et al (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav A, Narwal M, Arya R (2010) Stability studies for seedling traits with supra-optimal temperature exposure at seedling stage in pearl millet [Pennisetum glaucum (L.) R. Br.]. Forage Res 32:65–70

    Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2:275–292

    Article  CAS  Google Scholar 

  • Yadav A, Arya R, Singh M et al (2016) Heat tolerance in pearl millet: a review. Forage Res 42:65–81

    Google Scholar 

  • Yadav OP, Singh DV, Vadez V et al (2017) Improving pearl millet for drought tolerance-retrospect and prospects. Indian J Genet Plant Breed 77:464–474. https://doi.org/10.5958/0975-6906.2017.00062.1

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Zegada-Lizarazu W, Zatta A, Monti A (2012) Water uptake efficiency and above-and belowground biomass development of sweet sorghum and maize under different water regimes. Plant Soil 351:47–60

    Article  CAS  Google Scholar 

  • Zhan A, Schneider H, Lynch JP (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol 168:1603–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang T, Li C (2005) Different responses of two contrasting wheat genotypes to abscisic acid application. Biol Plant 49:613–616

    Article  CAS  Google Scholar 

  • Zhang A, Ji Y, Sun M et al (2021) Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics 22:1–14. https://doi.org/10.1186/S12864-021-07888-5

    Article  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zscheischler J, Seneviratne SI (2017) Dependence of drivers affects risks associated with compound events. Sci Adv 3:e1700263

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Laplaze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sine, B. et al. (2024). Physiological and Molecular Bases of Drought and Heat Tolerance in Pearl Millet. In: Tonapi, V.A., Thirunavukkarasu, N., Gupta, S., Gangashetty, P.I., Yadav, O. (eds) Pearl Millet in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-5890-0_10

Download citation

Publish with us

Policies and ethics