Skip to main content

The Past, Present and Future of Hip Arthroplasty

  • Chapter
  • First Online:
Hip Arthroplasty

Abstract

Hip arthroplasty is a frequently performed procedure with over one hundred years of operative history. It is a reliable intervention to relieve pain and improve function in patients with advanced hip arthritis. Advances in bioengineering and materials science have driven the development of more robust and durable hip prostheses to accommodate higher stresses, as well as more resilient bearing surfaces to reduce wear. The onset of computer-assisted and robotic surgery has improved intra-operative navigation, leading to increased precision of implant positioning. The development of multi-disciplinary care pathways has accelerated discharge and rehabilitation and day-case hip arthroplasty is increasing in prevalence. This chapter examines the progression of hip arthroplasty from its origins, describing how the development of techniques and materials has reduced failure rates whilst accommodating the needs of individual patients. Appreciating the historical development of this technique improves understanding of prosthetic selection in different patient cohorts, leading to better patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Refeences

  1. Muirhead-Allwood SK, et al. Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components: survival at 10 to 17 years. J Bone Joint Surg Br. 2010;92(8):1079–84.

    Article  CAS  PubMed  Google Scholar 

  2. Baer WS. Arthroplasty with the aid of animal membrane. JBJS. 1918;s2-16(2):94–115.

    Google Scholar 

  3. Glück T. Referat über die durch das moderne chirurgische experiment gewonnenen positiven resultaten, betreffende die naht und den ersatz von defekten hőherer gewebe, sowie über die verwerthung resorbirbarer und lebendiger tampons in der chirurgie. Arch Klin Chir. 1891;41:187–239.

    Google Scholar 

  4. Smith-Petersen MN. Evolution of mould arthroplasty of the hip joint. J Bone Joint Surg Br. 1948;30b(1):59–75.

    Article  Google Scholar 

  5. Wiles P. The classic: the surgery of the osteo-arthritic hip. Clin Orthop Relat Res. 2003;417:3–16.

    Article  Google Scholar 

  6. Judet J. Technique and results with the acrylic femoral head prosthesis. J Bone Joint Surgery Br Vol. 1952;34(2):173–80.

    Google Scholar 

  7. Moore AT, Bohlman HR. The classic. Metal hip joint. A case report 1943. Clin Orthop Relat Res. 1983;(176):3–6.

    Google Scholar 

  8. Charnley J. Long-term clinical results. In: Low friction arthroplasty of the hip. Springer; 1979. p. 41–65.

    Chapter  Google Scholar 

  9. Shen G. Femoral stem fixation. The journal of bone and joint surgery. Brit Vol. 1998;80(5):754–6.

    CAS  Google Scholar 

  10. Hoskins W, et al. Polished cemented femoral stems have a lower rate of revision than matt finished cemented stems in total hip arthroplasty: an analysis of 96,315 cemented femoral stems. J Arthroplasty. 2018;33(5):1472–6.

    Article  PubMed  Google Scholar 

  11. Kazi HA, et al. Not all cemented hips are the same: a register-based (NJR) comparison of taper-slip and composite beam femoral stems. Acta Orthop. 2019;90(3):214–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sporer SM, et al. The effects of surface roughness and polymethylmethacrylate precoating on the radiographic and clinical results of the Iowa hip prosthesis. A study of patients less than fifty years old. J Bone Joint Surg Am. 1999;81(4):481–92.

    Article  CAS  PubMed  Google Scholar 

  13. Yamada H, et al. Cementless total hip replacement: past, present, and future. J Orthop Sci. 2009;14(2):228–41.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mavrogenis AF, et al. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9(2):61–71.

    CAS  PubMed  Google Scholar 

  15. Bourne RB, et al. Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am. 1994;76(10):1464–70.

    Article  CAS  PubMed  Google Scholar 

  16. Dorr LD, et al. Failure mechanisms of anatomic porous replacement I cementless total hip replacement. Clin Orthop Relat Res. 1997;334:157–67.

    Article  Google Scholar 

  17. Lamb JN, et al. Risk factors for intraoperative periprosthetic femoral fractures during primary Total hip arthroplasty. An analysis from the National Joint Registry for England and Wales and the Isle of Man. J Arthroplasty. 2019;34(12):3065–73. e1

    Article  PubMed  Google Scholar 

  18. Yan SG, et al. Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review. Int Orthop. 2018;42(9):2077–86.

    Article  PubMed  Google Scholar 

  19. Schmidutz F, et al. Biomechanical reconstruction of the hip: comparison between modular short-stem hip arthroplasty and conventional total hip arthroplasty. Int Orthop. 2012;36(7):1341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giardina F, et al. Short stems versus conventional stems in cementless total hip arthroplasty: a long-term registry study. J Arthroplasty. 2018;33(6):1794–9.

    Article  PubMed  Google Scholar 

  21. Hauer G, et al. Survival rate of short-stem hip prostheses: a comparative analysis of clinical studies and National Arthroplasty Registers. J Arthroplasty. 2018;33(6):1800–5.

    Article  PubMed  Google Scholar 

  22. Flivik G, et al. Is removal of subchondral bone plate advantageous in cemented cup fixation? A randomized RSA study. Clin Orthop Relat Res. 2006;448:164–72.

    Article  PubMed  Google Scholar 

  23. Emms N, et al. Long-term outcome of a cementless, hemispherical, press-fit acetabular component: survivorship analysis and dose-response relationship to linear polyethylene wear. J None Joint Surg Brit. 2010;92(6):856–61.

    Article  CAS  Google Scholar 

  24. Miyakawa S, et al. Grit-blasted and hydroxyapatite-coated total hip arthroplasty: an 11- to 14-year follow-up study. J Orthop Sci. 2004;9(5):462–7.

    Article  CAS  PubMed  Google Scholar 

  25. Friedman RJ, et al. Current concepts in orthopaedic biomaterials and implant fixation. Instr Course Lect. 1994;43:233–55.

    CAS  PubMed  Google Scholar 

  26. Bobyn JD, et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  27. Medlin D, et al. Metallurgical characterization of a porous tantalum biomaterial (trabecular metal) for orthopaedic implant applications. In: Materials & processes from medical devices conference; 2004.

    Google Scholar 

  28. Lewinnek GE, et al. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60(2):217–20.

    Article  CAS  PubMed  Google Scholar 

  29. Clyburn TA, Cui Q. Antibiotic laden cement: current state of the art. AAOS Now. 2007;1:17–8.

    Google Scholar 

  30. Barrack RL, Mulroy RD Jr, Harris WH. Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review. The journal of bone and joint surgery. Brit Vol. 1992;74(3):385–9.

    CAS  Google Scholar 

  31. Majkowski RS, et al. Bone surface preparation in cemented joint replacement. J Bone Joint Surg Br. 1993;75(3):459–63.

    Article  CAS  PubMed  Google Scholar 

  32. Mulroy R Jr. and W. Harris, the effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. The journal of bone and joint surgery. Brit Vol. 1990;72(5):757–60.

    Google Scholar 

  33. Breusch S, et al. Lavage technique in total hip arthroplasty: jet lavage produces better cement penetration than syringe lavage in the proximal femur. J Arthroplasty. 2000;15(7):921–7.

    Article  CAS  PubMed  Google Scholar 

  34. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4(4):157–63.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cristofolini L, et al. Increased long-term failure risk associated with excessively thin cement mantle in cemented hip arthroplasty: a comparative in vitro study. Clin Biomech (Bristol, Avon). 2007;22(4):410–21.

    Article  PubMed  Google Scholar 

  36. Langlais F, et al. The ‘French paradox’. J Bone Joint Surgery Br Vol. 2003;85(1):17–20.

    Article  CAS  Google Scholar 

  37. El Masri F, et al. Is the so-called 'French paradox' a reality?: long-term survival and migration of the Charnley-Kerboull stem cemented line-to-line. J Bone Joint Surg Br. 2010;92(3):342–8.

    Article  PubMed  Google Scholar 

  38. Harris WH. Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res. 2001;393:66–70.

    Article  Google Scholar 

  39. Prock-Gibbs H, et al. Incidence of osteolysis and aseptic loosening following metal-on-highly cross-linked polyethylene hip arthroplasty: a systematic review of studies with up to 15-year follow-up. J Bone Joint Surg Am. 2021;103(8):728–40.

    Article  PubMed  Google Scholar 

  40. Wyatt MC, et al. Does vitamin E highly-crosslinked polyethylene convey an advantage in primary total hip replacement? A systematic review and meta-analysis. Hip Int. 2020;30(5):598–608.

    Article  PubMed  Google Scholar 

  41. Vinoth A, Datta S. Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: an artificial intelligence approach. J Thermoplast Compos Mater. 2020;54(2):179–92.

    Article  CAS  Google Scholar 

  42. Fawsitt CG, et al. Choice of prosthetic implant combinations in Total hip replacement: cost-effectiveness analysis using UK and Swedish hip joint registries data. Value Health. 2019;22(3):303–12.

    Article  PubMed  Google Scholar 

  43. Digas G, et al. The Otto Aufranc award. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res. 2004;429:6–16.

    Article  Google Scholar 

  44. Good V, et al. Reduced wear with oxidized zirconium femoral heads. JBJS. 2003;85(suppl_4):105–10.

    Article  Google Scholar 

  45. Jenabzadeh A-R, Pearce SJ, Walter WL. Total hip replacement: ceramic-on-ceramic. In: Seminars in arthroplasty. Elsevier; 2012.

    Google Scholar 

  46. Cuckler JM. The rationale for metal-on-metal total hip arthroplasty. Clin Orthop Relat Res (1976–2007). 2005;441:132–6.

    Article  Google Scholar 

  47. Bosker BH, et al. Pseudotumor formation and serum ions after large head metal-on-metal stemmed total hip replacement. Risk factors, time course and revisions in 706 hips. Arch Orthop Trauma Surg. 2015;135(3):417–25.

    Article  CAS  PubMed  Google Scholar 

  48. Hunt LP, et al. The risk of developing cancer following metal-on-metal hip replacement compared with non metal-on-metal hip bearings: findings from a prospective national registry "the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man". PloS One. 2018;13(9):e0204356.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haughom BD, et al. Do complication rates differ by gender after metal-on-metal hip resurfacing arthroplasty? A systematic review. Clin Orthop Relat Res. 2015;473(8):2521–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gross TP, Liu F. Risk factor analysis for early femoral failure in metal-on-metal hip resurfacing arthroplasty: the effect of bone density and body mass index. J Orthop Surg Res. 2012;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith AJ, et al. Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the National Joint Registry of England and Wales. Lancet. 2012;379(9822):1199–204.

    Article  PubMed  Google Scholar 

  52. Jazrawi LM, et al. Wear rates of ceramic-on-ceramic bearing surfaces in total hip implants: a 12-year follow-up study. J Arthroplasty. 1999;14(7):781–7.

    Article  CAS  PubMed  Google Scholar 

  53. Petsatodis GE, et al. Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am. 2010;92(3):639–44.

    Article  PubMed  Google Scholar 

  54. Hamilton WG, et al. THA with Delta ceramic on ceramic: results of a multicenter investigational device exemption trial. Clin Orthop Relat Res. 2010;468(2):358–66.

    Article  PubMed  Google Scholar 

  55. Howard DP, et al. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry. Bone Joint J. 2017;99-b(8):1012–9.

    Article  Google Scholar 

  56. Matar WY, et al. Revision hip arthroplasty for ceramic-on-ceramic squeaking hips does not compromise the results. J Arthroplasty. 2010;25(6 Suppl):81–6.

    Article  PubMed  Google Scholar 

  57. Blakeney WG, et al. Excellent results of large-diameter ceramic-on-ceramic bearings in total hip arthroplasty: is squeaking related to head size. Bone Joint J. 2018;100-b(11):1434–41.

    Article  Google Scholar 

  58. Howie DW, Holubowycz OT, Middleton R. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94(12):1095–102.

    Article  PubMed  Google Scholar 

  59. Meneghini RM, et al. Large metal heads and vitamin E polyethylene increase frictional torque in total hip arthroplasty. J Arthroplasty. 2016;31(3):710–4.

    Article  PubMed  Google Scholar 

  60. Del Balso C, et al. Trunnionosis: does head size affect fretting and corrosion in Total hip arthroplasty? J Arthroplasty. 2016;31(10):2332–6.

    Article  PubMed  Google Scholar 

  61. Shah SM, et al. Late dislocations after total hip arthroplasty: is the bearing a factor? J Arthroplasty. 2017;32(9):2852–6.

    Article  PubMed  Google Scholar 

  62. Darrith B, Courtney PM, Della Valle CJ. Outcomes of dual mobility components in total hip arthroplasty: a systematic review of the literature. Bone Joint J. 2018;100-b(1):11–9.

    Article  Google Scholar 

  63. Adam P, et al. Dual mobility cups hip arthroplasty as a treatment for displaced fracture of the femoral neck in the elderly. A prospective, systematic, multicenter study with specific focus on postoperative dislocation. Orthop Traumatol Surg Res. 2012;98(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  64. Ko LM, Hozack W. The dual mobility cup: what problems does it solve? Bone Joint J. 2016;98(1_Supple_A):60–3.

    Article  PubMed  Google Scholar 

  65. Albanese KM, et al. Dual-mobility articulations in femoral neck fractures: a systematic review of the literature and meta-analysis of the outcomes. J Am Acad Orthop Surg. 2021;29(12):e618–27.

    Article  PubMed  Google Scholar 

  66. Massin P, et al. Fixation failures of dual mobility cups: a mid-term study of 2601 hip replacements. Clin Orthop Relat Res. 2012;470(7):1932–40.

    Article  PubMed  Google Scholar 

  67. McMinn D, et al. Metal on metal surface replacement of the hip: experience of the McMinn prosthesis. Clin Orthop Relat Res (1976–2007). 1996;329:S89–98.

    Article  Google Scholar 

  68. National Joint Registry. 14th annual report. Wales and Northern Ireland: National Joint Registry for England; 2017.

    Google Scholar 

  69. Musbahi O, Logishetty K, Cobb JP. Hip resurfacing arthroplasty or Total hip arthroplasty? In: Controversies in Orthopaedic surgery of the lower limb. Springer; 2021. p. 15–22.

    Chapter  Google Scholar 

  70. Matharu GS, et al. The outcome of the Birmingham hip resurfacing in patients aged < 50 years up to 14 years post-operatively. Bone Joint J. 2013;95-b(9):1172–7.

    Article  CAS  PubMed  Google Scholar 

  71. Matharu G, et al. The outcome of the Birmingham hip resurfacing in patients aged< 50 years up to 14 years post-operatively. Bone Joint J. 2013;95(9):1172–7.

    Article  PubMed  Google Scholar 

  72. Smith AJ, et al. Failure rates of metal-on-metal hip resurfacings: analysis of data from the National Joint Registry for England and Wales. Lancet. 2012;380(9855):1759–66.

    Article  PubMed  Google Scholar 

  73. Treacy RBC, et al. Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone Joint Res. 2019;8(10):443–50.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. 2013;5(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Renkawitz T, et al. Impingement-free range of movement, acetabular component cover and early clinical results comparing 'femur-first' navigation and 'conventional' minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J. 2015;97-b(7):890–8.

    Article  CAS  PubMed  Google Scholar 

  76. Dorr LD, et al. Precision and bias of imageless computer navigation and surgeon estimates for acetabular component position. Clin Orthop Relat Res. 2007;465:92–9.

    Article  PubMed  Google Scholar 

  77. Agarwal S, et al. The use of computer navigation in Total hip arthroplasty is associated with a reduced rate of revision for dislocation: a study of 6,912 navigated THA procedures from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am. 2021;103(20):1900–5.

    Article  PubMed  Google Scholar 

  78. Romanowski JR, Swank ML. Imageless navigation in hip resurfacing: avoiding component malposition during the surgeon learning curve. J Bone Joint Surg Am. 2008;90(Suppl 3):65–70.

    Article  PubMed  Google Scholar 

  79. Xu K, et al. Computer navigation in total hip arthroplasty: a meta-analysis of randomized controlled trials. Int J Surg. 2014;12(5):528–33.

    Article  PubMed  Google Scholar 

  80. Lang JE, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93(10):1296–9.

    Article  CAS  PubMed  Google Scholar 

  81. Nakamura N, et al. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res. 2010;468(4):1072–81.

    Article  PubMed  Google Scholar 

  82. Redmond JM, et al. Accuracy of component placement in robotic-assisted total hip arthroplasty. Orthopedics. 2016;39(3):193–9.

    Article  PubMed  Google Scholar 

  83. Han PF, et al. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies. Int J Med Robot. 2019;15(3):e1990.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kirchner GJ, et al. The cost of robot-assisted Total hip arthroplasty: comparing safety and hospital charges to conventional Total hip arthroplasty. J Am Acad Orthop Surg. 2021;29(14):609–15.

    Article  PubMed  Google Scholar 

  85. Hananouchi T, et al. Effect of robotic milling on periprosthetic bone remodeling. J Orthop Res. 2007;25(8):1062–9.

    Article  PubMed  Google Scholar 

  86. Schneider AK, et al. Clinical accuracy of a patient-specific femoral osteotomy guide in minimally-invasive posterior hip arthroplasty. Hip Int. 2018;28(6):636–41.

    Article  PubMed  Google Scholar 

  87. Callanan MC, et al. The John Charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011;469(2):319–29.

    Article  PubMed  Google Scholar 

  88. Henckel J, et al. 3D-printed patient-specific guides for hip arthroplasty. J Am Acad Orthop Surg. 2018;26(16):e342–8.

    Article  PubMed  Google Scholar 

  89. Pellicci PM, Bostrom M, Poss R. Posterior approach to total hip replacement using enhanced posterior soft tissue repair. Clin Orthop Relat Res (1976–2007). 1998;355:224–8.

    Article  Google Scholar 

  90. Malik A, Dorr LD. The science of minimally invasive total hip arthroplasty. Clin Orthop Relat Res. 2007;463:74–84.

    Article  PubMed  Google Scholar 

  91. Murphy, S.B., T.M. Ecker, and M. Tannast, Total hip arthroplasty performed using conventional and computer-assisted, tissue-preserving techniques 6. 2006.

    Google Scholar 

  92. Reininga IH, et al. Effectiveness of computer-navigated minimally invasive total hip surgery compared to conventional total hip arthroplasty: design of a randomized controlled trial. BMC Musculoskelet Disord. 2007;8(1):1–6.

    Article  Google Scholar 

  93. Dietrich M, et al. Perioperative fractures in cementless total hip arthroplasty using the direct anterior minimally invasive approach: reduced risk with short stems. J Arthroplasty. 2018;33(2):548–54.

    Article  PubMed  Google Scholar 

  94. Migliorini F, et al. Total hip arthroplasty: minimally invasive surgery or not? Meta-analysis of clinical trials. Int Orthop. 2019;43(7):1573–82.

    Article  PubMed  Google Scholar 

  95. White JJ, Houghton-Clemmey R, Marval P. Enhanced recovery after surgery (ERAS): an orthopaedic perspective. J Perioper Pract. 2013;23(10):228–32.

    PubMed  Google Scholar 

  96. Pollock M, et al. Outpatient total hip arthroplasty, total knee arthroplasty, and unicompartmental knee arthroplasty: a systematic review of the literature. JBJS Rev. 2016;4(12)

    Google Scholar 

  97. Berend K, et al. The outpatient total hip arthroplasty: a paradigm change. Bone Joint J. 2018;100(1_Supple_A):31–5.

    Article  PubMed  Google Scholar 

  98. Porter M, et al. Orthopaedic registries - the UK view (National Joint Registry): impact on practice. EFORT Open Rev. 2019;4(6):377–90.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Prime MS, Palmer J, Khan WS. The National Joint Registry of England and Wales. Orthopedics. 2011;34(2):107–10.

    Article  PubMed  Google Scholar 

  100. de Steiger RN, et al. Five-year results of the ASR XL acetabular system and the ASR hip resurfacing system: an analysis from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am. 2011;93(24):2287–93.

    Article  PubMed  Google Scholar 

  101. Delaunay C. Registries in orthopaedics. Orthop Traumatol Surg Res. 2015;101(1):S69–75.

    Article  CAS  PubMed  Google Scholar 

  102. Sedrakyan A, et al. The international consortium of Orthopaedic registries: overview and summary. J Bone Joint Surg Am. 2011;93(Suppl. 3):1–12.

    Article  PubMed  Google Scholar 

  103. Dainty JR, et al. Trajectories of pain and function in the first five years after total hip and knee arthroplasty: an analysis of patient reported outcome data from the National Joint Registry. Bone Joint J. 2021;103(6):1111–8.

    Article  PubMed  Google Scholar 

  104. Trauner KB. The emerging role of 3D printing in arthroplasty and orthopedics. J Arthroplasty. 2018;33(8):2352–4.

    Article  PubMed  Google Scholar 

  105. De Martino I, et al. Survivorship and clinical outcomes of custom triflange acetabular components in revision total hip arthroplasty: a systematic review. J Arthroplasty. 2019;34(10):2511–8.

    Article  PubMed  Google Scholar 

  106. Dessyn E, et al. A 20-year follow-up evaluation of total hip arthroplasty in patients younger than 50 using a custom cementless stem. Hip Int. 2019;29(5):481–8.

    Article  PubMed  Google Scholar 

  107. Murr LE, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc A Math Phys Eng Sci. 1917;2010(368):1999–2032.

    Google Scholar 

  108. Harrysson OL, Cormier DR. Direct fabrication of custom orthopedic implants using electron beam melting technology. In: Advanced manufacturing technology for medical applications: reverse engineering, software conversion and rapid prototyping, vol. 9; 2006.

    Google Scholar 

  109. Castagnini F, et al. Highly porous titanium cups versus hydroxyapatite-coated sockets: midterm results in metachronous bilateral Total hip arthroplasty. Med Princ Pract. 2019;28(6):559–65.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Castagnini F, et al. Highly porous titanium cup in cementless total hip arthroplasty: registry results at eight years. Int Orthop. 2019;43(8):1815–21.

    Article  PubMed  Google Scholar 

  111. Puckett SD, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31(4):706–13.

    Article  CAS  PubMed  Google Scholar 

  112. Bhadra C, et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep. 2015;5:16817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pishbin F, et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9(7):7469–79.

    Article  CAS  PubMed  Google Scholar 

  114. Khor WS, et al. Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls. Ann Transl Med. 2016;4(23):454.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Frank RM, et al. Utility of modern arthroscopic simulator training models. Arthroscopy. 2014;30(1):121–33.

    Article  PubMed  Google Scholar 

  116. Tillander B, et al. A virtual reality trauma simulator. Med Teach. 2004;26(2):189–91.

    Article  CAS  PubMed  Google Scholar 

  117. Vaughan N, et al. Can virtual-reality simulators assess experience and skill level of orthopaedic surgeons? In: 2015 Science and information conference (SAI). IEEE; 2015.

    Google Scholar 

  118. Logishetty K, et al. Fully immersive virtual reality for Total hip arthroplasty: objective measurement of skills and transfer of visuospatial performance after a competency-based simulation curriculum. JBJS. 2020;102(6)

    Google Scholar 

  119. Shenai MB, et al. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance. Neurosurgery. 2011;68(Suppl. 1):200–7. discussion 207

    PubMed  Google Scholar 

  120. Davis MC, et al. Virtual interactive presence in global surgical education: international collaboration through augmented reality. World Neurosurg. 2016;86:103–11.

    Article  PubMed  Google Scholar 

  121. Siebelt M, et al. Machine learning algorithms trained with pre-hospital acquired history-taking data can accurately differentiate diagnoses in patients with hip complaints. Acta Orthop. 2021;92(3):254–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim JS, et al. Predicting surgical complications in patients undergoing elective adult spinal deformity procedures using machine learning. Spine Deformity. 2018;6(6):762–70.

    Article  PubMed  Google Scholar 

  123. Jodeiri A, et al. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Comput Methods Programs Biomed. 2020;184:105282.

    Article  PubMed  Google Scholar 

  124. Shohat N, et al. Frank Stinchfield award: identifying who will fail following irrigation and debridement for prosthetic joint infection: a machine learning-based validated tool. Bone Joint J. 2020;102(7 Suppl. B):11–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Khanduja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toemoe, S.E.T., Lu, V., Singh, P.J., Khanduja, V. (2023). The Past, Present and Future of Hip Arthroplasty. In: Sharma, M. (eds) Hip Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-99-5517-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5517-6_63

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5516-9

  • Online ISBN: 978-981-99-5517-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics