Skip to main content
Log in

Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Short-stem hip arthroplasty (SHA) was designed to preserve bone stock and provide an improved load transfer. To gain more evidence regarding the load transfer, this review analysed the periprosthetic bone remodelling of SHA in comparison to standard hip arthroplasty (THA).

Methods

PubMed and ScienceDirect were screened to extract dual-energy X-ray absorptiometry (DXA) studies evaluating the periprosthetic bone remodelling of SHA and two proven THA designs. From the studies included, the postoperative change in periprosthetic bone mineral density (BMD) after one year and the trend over two years was determined.

Results

Fifteen studies with four SHAs (CFP, Metha, Nanos, Fitmore) and two THAs (CLS and Bicontact) designs were included. All SHA and THA stems revealed an initial decrease at the calcar and major trochanter (Gruen 1 and 7) with the Metha, Nanos and Fitmore showing a smaller and more balanced remodelling compared to THA. The pattern after one year and the trend over two years argue for a methaphyseal anchorage of the Metha and Nanos, whereas the Fitmore and CFP seem to anchor metha-diaphyseal. Clearly different pattern of bone remodelling were observed between all four SHAs.

Conclusions

Periprosthetic bone remodelling is also present in SHA, with the main bone reduction observed proximally. However, certain SHA stems show a more balanced remodelling compared to THA, arguing for a favourable load transfer. Also, the femoral length where bone remodelling occurs is clearly shorter in SHA. As distinctively different pattern between the SHA designs were observed, they should not be judged as a single implant group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 48(5):797–800. https://doi.org/10.1016/j.jbiomech.2014.12.021

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi S, Saito N, Horiuchi H, Iorio R, Takaoka K (2000) Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty. Lancet 355(9214):1499–1504. https://doi.org/10.1016/S0140-6736(00)02164-4

    Article  PubMed  CAS  Google Scholar 

  3. Decking R, Rokahr C, Zurstegge M, Simon U, Decking J (2008) Maintenance of bone mineral density after implantation of a femoral neck hip prosthesis. BMC Musculoskelet Disord 9:17. https://doi.org/10.1186/1471-2474-9-17

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(3):533–538. https://doi.org/10.1007/s00264-011-1361-0

    Article  PubMed  Google Scholar 

  5. Schmidutz F, Graf T, Mazoochian F, Fottner A, Bauer-Melnyk A, Jansson V (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83(4):360–365. https://doi.org/10.3109/17453674.2012.712891

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R (2016) Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg 136(1):125–130. https://doi.org/10.1007/s00402-015-2370-z

    Article  PubMed  Google Scholar 

  7. Kutzner KP, Pfeil D, Kovacevic MP, Rehbein P, Mai S, Siebert W, Pfeil J (2016) Radiographic alterations in short-stem total hip arthroplasty: a 2-year follow-up study of 216 cases. Hip Int 26(3):278–283. https://doi.org/10.5301/hipint.5000339

    Article  PubMed  Google Scholar 

  8. Wittenberg RH, Steffen R, Windhagen H, Bucking P, Wilcke A (2013) Five-year results of a cementless short-hip-stem prosthesis. Orthop Rev (Pavia) 5(1):e4. https://doi.org/10.4081/or.2013.e4

    Article  Google Scholar 

  9. Aldinger PR, Sabo D, Pritsch M, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73(2):115–121. https://doi.org/10.1007/s00223-002-2036-z

    Article  PubMed  CAS  Google Scholar 

  10. Salemyr M, Muren O, Ahl T, Boden H, Eisler T, Stark A, Skoldenberg O (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 86(6):659–666. https://doi.org/10.3109/17453674.2015.1067087

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albanese CV, Rendine M, De Palma F, Impagliazzo A, Falez F, Postacchini F, Villani C, Passariello R, Santori FS (2006) Bone remodelling in THA: a comparative DXA scan study between conventional implants and a new stemless femoral component. A preliminary report. Hip Int 16(Suppl 3):9–15

    Article  PubMed  Google Scholar 

  12. Gasbarra E, Celi M, Perrone FL, Iundusi R, Di Primio L, Guglielmi G, Tarantino U (2014) Osseointegration of Fitmore stem in total hip arthroplasty. J Clin Densitom 17(2):307–313. https://doi.org/10.1016/j.jocd.2013.11.001

    Article  PubMed  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269 W264

    Article  PubMed  Google Scholar 

  14. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  15. Brinkmann V, Radetzki F, Delank KS, Wohlrab D, Zeh A (2015) A prospective randomized radiographic and dual-energy X-ray absorptiometric study of migration and bone remodeling after implantation of two modern short-stemmed femoral prostheses. J Orthop Traumatol 16(3):237–243. https://doi.org/10.1007/s10195-015-0335-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Synder M, Krajewski K, Sibinski M, Drobniewski M (2015) Periprosthetic bone remodeling around short stem.Orthopedics. 38(3 Suppl):S40-S45

  17. Jahnke A, Engl S, Seeger JB, Basad E, Rickert M, Ishaque BA (2015) Influences of fit and fill following hip arthroplasty using a cementless short-stem prosthesis. Arch Orthop Trauma Surg 135(11):1609-1614

  18. Parchi PD, Ciapini G, Castellini I, Mannucci C, Nucci AM, Piolanti N, Maffei S, Lisanti M (2017) Evaluation of the effects of the Metha® short stem on periprosthetic bone remodelling in total hip arthroplasties: results at 48 months. Surg Technol Int 30:346-351

  19. Zeh A, Pankow F, Röllinhoff M, Delank S, Wohlrab D (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79(2):174-180

  20. Lazarinis S, Mattsson P, Milbrink J, Mallmin H, Hailer NP (2013)A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84(1):32-39

  21. Wolf O, Mattsson P, Milbrink J, Larsson S, Mallmin H (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes: a randomized study using DXA and RSA in 38 patients followed for 5 years. Acta Orthop 81(3):286–291. https://doi.org/10.3109/17453674.2010.487238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reiter A, Sabo D, Simank HG, Büchner T, Seidel M, Lukoschek M (1997) [Periprosthetic mineral density in cement-free hip replacement arthroplasty]. Z Orthop Ihre Grenzgeb 135(6):499-504

  23. Lerch M, Kurtz A, Windhagen H, Bouguecha A, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) The cementless Bicontact stem in a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(11):2211-2217

  24. Stukenborg-Colsman CM, von der Haar-Tran A, Windhagen H, Bouguecha A, Wefstaedt P, Lerch M (2012) Bone remodelling around a cementless straight THA stem: a prospective dual-energy X-ray absorptiometry study. Hip Int 22(2):166–171. https://doi.org/10.5301/hip.2012.9227

    Article  PubMed  Google Scholar 

  25. von Lewinski G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38(3 Suppl):S51–S56. https://doi.org/10.3928/01477447-20150215-57

    Article  Google Scholar 

  26. Schnurr C, Schellen B, Dargel J, Beckmann J, Eysel P, Steffen R (2017) Low short-stem revision rates: 1-11 year results from 1888 total hip arthroplasties. J Arthroplast 32(2):487–493. https://doi.org/10.1016/j.arth.2016.08.009

    Article  Google Scholar 

  27. Budde S, Seehaus F, Schwarze M, Hurschler C, Floerkemeier T, Windhagen H, Noll Y, Ettinger M, Thorey F (2016) Analysis of migration of the Nanos(R) short-stem hip implant within two years after surgery. Int Orthop 40(8):1607–1614. https://doi.org/10.1007/s00264-015-2999-9

    Article  PubMed  Google Scholar 

  28. Speirs AD, Heller MO, Taylor WR, Duda GN, Perka C (2007) Influence of changes in stem positioning on femoral loading after THR using a short-stemmed hip implant. Clin Biomech (Bristol, Avon) 22(4):431–439. https://doi.org/10.1016/j.clinbiomech.2006.12.003

    Article  Google Scholar 

  29. Maier MW, Streit MR, Innmann MM, Kruger M, Nadorf J, Kretzer JP, Ewerbeck V, Gotterbarm T (2015) Cortical hypertrophy with a short, curved uncemented hip stem does not have any clinical impact during early follow-up. BMC Musculoskelet Disord 16:371. https://doi.org/10.1186/s12891-015-0830-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Formica M, Cavagnaro L, Basso M, Zanirato A, Palermo A, Felli L (2017) What is the fate of the neck after a collum femoris preserving prosthesis? A nineteen years single center experience. Int Orthop 41(7):1329–1335. https://doi.org/10.1007/s00264-016-3350-9

    Article  PubMed  Google Scholar 

  31. Schmidt R, Gollwitzer S, Nowak TE, Nowak M, Haberle L, Kress A, Forst R, Muller LA (2011) Periprosthetic femoral bone reaction after total hip arthroplasty with preservation of the collum femoris: CT-assisted osteodensitometry 1 and 3 years postoperatively. Orthopade 40(7):591–598. https://doi.org/10.1007/s00132-011-1745-2

    Article  PubMed  CAS  Google Scholar 

  32. Briem D, Schneider M, Bogner N, Botha N, Gebauer M, Gehrke T, Schwantes B (2011) Mid-term results of 155 patients treated with a collum femoris preserving (CFP) short stem prosthesis. Int Orthop 35(5):655–660. https://doi.org/10.1007/s00264-010-1020-x

    Article  PubMed  Google Scholar 

  33. Kress AM, Schmidt R, Nowak TE, Nowak M, Haeberle L, Forst R, Mueller LA (2012) Stress-related femoral cortical and cancellous bone density loss after collum femoris preserving uncemented total hip arthroplasty: a prospective 7-year follow-up with quantitative computed tomography. Arch Orthop Trauma Surg 132(8):1111–1119. https://doi.org/10.1007/s00402-012-1537-0

    Article  PubMed  Google Scholar 

  34. Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38(3 Suppl):S6–S13. https://doi.org/10.3928/01477447-20150215-50

    Article  PubMed  Google Scholar 

  35. Khanuja HS, Banerjee S, Jain D, Pivec R, Mont MA (2014) Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am 96(20):1742–1752. https://doi.org/10.2106/JBJS.M.00780

    Article  PubMed  Google Scholar 

  36. Schmidutz F, Woiczinski M, Kistler M, Schroder C, Jansson V, Fottner A (2017) Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech (Bristol, Avon) 41:60–65. https://doi.org/10.1016/j.clinbiomech.2016.12.003

    Article  Google Scholar 

  37. Aldinger PR, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Cementless Spotorno tapered titanium stems: excellent 10-15-year survival in 141 young patients. Acta Orthop Scand 74(3):253–258. https://doi.org/10.1080/00016470310014157

    Article  PubMed  Google Scholar 

  38. Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G, Floerkemeier T (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia) 6(1):5211. https://doi.org/10.4081/or.2014.5211

    Article  Google Scholar 

  39. Merle C, Streit MR, Volz C, Pritsch M, Gotterbarm T, Aldinger PR (2011) Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: a DXA study at 12 and 17 years. Osteoporos Int 22(11):2879–2886. https://doi.org/10.1007/s00198-010-1483-z

    Article  PubMed  CAS  Google Scholar 

  40. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 86(1):20–26

    Article  PubMed  CAS  Google Scholar 

  41. Ercan A, Sokkar SM, Schmid G, Filler TJ, Abdelkafy A, Jerosch J (2016) Periprosthetic bone density changes after MiniHipTM cementless femoral short stem: one-year results of dual-energy X-ray absorptiometry study. SICOT J 2:40. https://doi.org/10.1051/sicotj/2016033

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study includes parts of the thesis of Y.S.G.

Funding

There was no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schmidutz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This systematic review retrospectively analysed published clinical data wherefore upon request of the Ethics Committee (Ethical Committee University of the LMU) neither a special ethics review nor a further ethical approval was necessary.

Informed consent

Due to the retrospective nature using anonymous data no additional informed consent of the patients was necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S.G., Weber, P., Steinbrück, A. et al. Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review. International Orthopaedics (SICOT) 42, 2077–2086 (2018). https://doi.org/10.1007/s00264-017-3691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3691-z

Keywords

Navigation