Skip to main content

Nanomaterials in the Development of Advanced Antimicrobial Agents

  • Chapter
  • First Online:
Nanotechnology Based Strategies for Combating Antimicrobial Resistance

Abstract

Nanotechnology, the application of materials with atomic or molecular-scale dimensions, has grown in popularity for medical uses and is an extremely exclusive method for eradicating or suppressing the activity of several pathogens. Antibiotics and additives are being replaced with nanostructured materials (NSMs) in a variety of goods to impart a microbicidal effect. Due to the rising prevalence of antibiotic resistance, researchers are more focused on the therapeutic potential of nanoparticles (NPs) as antibacterial and antiviral agents. Different nanomaterials have evolved as innovative strategies to deal with microbial infections and the problems caused by conventional antimicrobials. Unique antimicrobial characteristics are exhibited by metal nanoparticles (MNPs), metal oxide nanoparticles (MeO-NPs), and other nanomaterials acting as a pivotal point for the growth of innovative medicinal devices. The small size of MNPs imparts the capacity to damage microbial cells through a variety of methods. Nanomaterials are established to be effective antimicrobial agents against a variety of microbial diseases. Nanomaterials offer an intriguing route to restrict microbial development before human infection, in contrast to antibiotics, which are used to treat illnesses and infections in patients. The focus of this chapter is to provide comprehensive overview of multiple nanomaterials-based antimicrobial agents such as MNPs, MeO-NPs, different nanocomposite, nanoemulsions, carbon-based nanomaterials, quantum dots, liposomes, micelles, etc. along with their synthesis strategies used, particle size & dimensions, particular targeted microbial strain, type of antimicrobial testing method used, reported MIC value, and antimicrobial action mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • An J, Zhang H, Zhang J, Zhao Y, Yuan X (2009) Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287:1425–1434

    Article  CAS  Google Scholar 

  • Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayinde WB, Gitari MW, Muchindu M, Samie A (2018) Biosynthesis of ultrasonically modified ag-MgO nanocomposite and its potential for antimicrobial activity. J Nanotechnol 2018:1

    Article  Google Scholar 

  • Barua S, Thakur S, Aidew L, Buragohain AK, Chattopadhyay P, Karak N (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4(19):9777–9783

    Article  CAS  Google Scholar 

  • Baruah JM, Kalita S, Narayan J (2019) Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. Int Nano Lett 9:149–159

    Article  CAS  Google Scholar 

  • Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5(1):199–208

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Chamundeeswari M, Sobhana SL, Jacob JP, Kumar MG, Devi MP, Sastry TP, Mandal AB (2010) Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol Appl Biochem 55(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, Arockiaswamy W, Sivaperumal S (2016) Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J Mol Liq 219:232–238

    Article  CAS  Google Scholar 

  • Chatterjee A, Perevedentseva E, Jani M, Cheng CY, Ye YS, Chung PH, Cheng CL (2015) Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J Biomed Opt 20(5):051014–051014

    Article  PubMed  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SK (2015) A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv 5(61):49420–49428

    Article  Google Scholar 

  • Correa MG, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL (2020) Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol 11(1):1450–1469

    Article  CAS  Google Scholar 

  • Cruz MEM, Manuela GM, Bárbara M, Martins F, Luísa CM (2005) Liposomal superoxide Dismutases and their use in the treatment of experimental arthritis. Methods Enzymol 391:395–413

    Article  CAS  PubMed  Google Scholar 

  • Dehghanizade S, Arasteh J, Mirzaie A (2018) Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 46(1):160–168

    Article  CAS  PubMed  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications. RSC Adv 5:105003–105037

    Article  CAS  Google Scholar 

  • Dong X, Yang L (2014) Inhibitory effects of single-walled carbon nanotubes on biofilm formation from bacillus anthracis spores. Biofouling 30(10):1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Awak MA, Tomlinson N, Tang Y, Sun YP, Yang L (2017) Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One 12(9):0185324

    Article  Google Scholar 

  • Elder A, Gelein R, Silva V (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleraky NE, Allam A, Hassan SB, Omar MM (2020) Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, Montelongo-Peralta LZ, Treviño-González MT, Díaz Barriga Castro E, Saucedo-Salazar EM, Chávez Morales RM, Regalado Soto DI, Treviño González FM, Carrazco Rosales JL, Cruz RV, Morones-Ramírez JR (2018) In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine Volume 13:2349–2363

    Article  Google Scholar 

  • Fadda AA, Mohammed AR, Abdel-Galil E (2020) Synthesis and antimicrobial evaluation of some 4-quinolinylazo-N-pyrimidinyl benzenesulfonamide derivatives. Biointerface Res Appl Chem 10:4846–4852

    CAS  Google Scholar 

  • Faya M, Kalhapure RS, Kumalo HM, Waddad AY, Omolo C, Govender T (2018) Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 44:153–171

    Article  CAS  Google Scholar 

  • Ferreira M, Aguiar S, Bettencourt A, Gaspar MM (2021) Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv Transl Res 11:72–85

    Article  CAS  PubMed  Google Scholar 

  • Fishovitz J, Hermoso JA, Chang M, Mobashery S (2014) Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 66(8):572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantu L, Nicoli S (2021) Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 332:312–336

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Ghosh D, Bag PK, Bhattacharya SC, Saha A (2011) Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics. Nanoscale 3(3):1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Ghosh T, Dash SK, Chakraborty P, Guha A, Kawaguchi K, Roy S, Chattopadhyay T, Das D (2014) Preparation of antiferromagnetic Co3O4 nanoparticles from two different precursors by pyrolytic method: in vitro antimicrobial activity. RSC Adv 4(29):15022–15029

    Article  CAS  Google Scholar 

  • Groo AC, Matougui N, Umerska A, Saulnier P (2018) Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int J Nanomedicine 13:7565–7574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grozav A, Fedoriv M, Chornous V, Yakovychuk N, Kemskyi S, Vovk M (2021) Synthesis and bioevaluation of 5-Chloro-4-(1,3-Oxazol-5-yl)-1H-Pyrrole-3-Carboxyamides as antimicrobial agents. Biointerface Res Appl Chem 11:10595–10606

    CAS  Google Scholar 

  • Guo LY, Yan SZ, Tao X, Yang Q, Li Q, Wang TS, Yu SQ, Chen SL (2020) Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus aureus antibiotic-resistant bacterial infection. Mater Sci Eng C 106:110230

    Article  CAS  Google Scholar 

  • Gupta V, Nayak S (2015) Dendrimers: a review on synthetic approaches. J Appl Pharm Sci 5:117–122

    Article  Google Scholar 

  • Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A (2008) Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother 62(6):1291–1297

    Article  CAS  PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Mahdavi B, Paydarfard S, Zangeneh MM, Zangeneh A, Sadeghian N, Taslimi P, Erduran V, Sen F (2020) Retracted article: novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of cobalt nanoparticles containing Ziziphora clinopodioides Lam leaves extract. Sci Rep 10(1):12195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4:1–7

    Article  Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Iqbal T, Ali F, Khalid NR, Tahir MB, Ijaz M (2019) Facile synthesis and antimicrobial activity of CdS-Ag2S nanocomposites. Bioorg Chem 90:103064

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, Paximada P, Mandala I, Assadpour E, Mehrnia MA (2017) Nanoencapsulation technologies for the food and nutraceutical industries, pp 36–73

    Book  Google Scholar 

  • Jamzad M, Kamari Bidkorpeh M (2020) Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostruct Chem 10:193–201

    Article  CAS  Google Scholar 

  • Jeyaraj Pandian C, Palanivel R, Dhanasekaran S (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanoparticles 2016:1–13

    Article  Google Scholar 

  • Jones CH, Chen CK, Chen MF, Ravikrishnan A, Zhang HG, Gollakota A, Chung TC, Cheng C, Pfeifer BA (2015) PEGylated cationic polylactides for hybrid biosynthetic gene delivery. Mol Pharm 12:846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadian S, Manik G, Das N, Nehra P, Chauhan RP, Roy P (2020) Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver–sulfur doped graphene quantum dot (Ag@ S-GQDs) nanocomposites. J Mater Chem B 8(15):3028–3037

    Article  CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Athinarayanan J, Periasamy VS, Adisa AR, Al-Shuniaber MA, Gassem MA, Alshatwi AA (2018) Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb Pathog 120:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VA, Fernández-García M, Ferrer M (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4(1):4134

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kumar A (2020) Design and synthesis of anti-convulsant and anti-bacterial activity of new hydrazone derivatives. Biointerface Res Appl Chem 10:5229–5236

    Article  CAS  Google Scholar 

  • Lagacé J, Dubreuil M, Montplaisir S (1991) Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa. J Microencapsul 8(1):53–61

    Article  PubMed  Google Scholar 

  • Li P, Yang X, Zhang X, Pan J, Tang W, Cao W, Zhou J, Gong X, Xing X (2020) Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J Mater Sci 55:6744–16757

    Article  Google Scholar 

  • Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W (2021) The effects of luminescent CdSe quantum dot-functionalized antimicrobial peptides nanoparticles on antibacterial activity and molecular mechanism. Int J Nanomedicine Volume 16:1849–1867

    Article  Google Scholar 

  • Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 60(30):7548–7555

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Rong K, Li J, Yang H, Chen R (2013) Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med 24:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  CAS  PubMed  Google Scholar 

  • Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617

    Article  PubMed  PubMed Central  Google Scholar 

  • Mageshwari K, Sathyamoorthy R (2013) Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J Mater Sci Technol 29(10):909–914

    Article  CAS  Google Scholar 

  • Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T (2016) Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine Volume 11:5015–5025

    Article  Google Scholar 

  • Markova Z, Siskova KM, Filip J, Cuda J, Kolar M, Safarova K, Medrik I, Zboril R (2013) Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47(10):5285–5293

    Article  CAS  PubMed  Google Scholar 

  • Morsy MA, Ali EM, Kandeel M, Venugopala KN, Nair AB, Greish K, El-Daly M (2020) Screening and molecular docking of novel Benzothiazole derivatives as potential antimicrobial agents. Antibiotics 9(5):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morteza M, Roya S, Hamed H, Amir Z, Abolfazl A (2019) Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity. Drug Deliv 26(1):1292–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugabe C, Halwani M, Azghani AO, Lafrenie RM, Omri A (2006) Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 50(6):2016–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthu MS, Ajith P, Agnes J, Ramkumar R, Raja P, Anand DP (2022) Synthesis, characterizations and antibacterial studies of chromium trioxide nanoparticles. Int J Mod Trend Sci Technol 8:252–258

    Google Scholar 

  • Myc A, Vanhecke T, Landers JJ, Hamouda T, Baker JR (2003) The fungicidal activity of novel nanoemulsion (X8W 60 PC) against clinically important yeast and filamentous fungi. Mycopathologia 155:195–201

    Article  Google Scholar 

  • Neelgund GM, Oki A, Luo Z (2012) Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly (amidoamine) grafted carbon nanotubes. Colloids Surf B Biointerfaces 100:215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006a) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Madler L (2006b) Toxic potential of materials at the nano level. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SC, Kim NH, Yang W, Nah JW, Jang MK, Lee D (2016) Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents. J Control Release 221:37–47

    Article  CAS  PubMed  Google Scholar 

  • Paudel SK, Bhargava K, Kotturi H (2019) Antimicrobial activity of cinnamon oil nanoemulsion against Listeria monocytogenes and Salmonella spp. on melons. LWT 111:682–687

    Article  CAS  Google Scholar 

  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF (2020) Nanomaterials 10:135–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovici C, Popa M, Sunel V, Atanase LI, Ichim DL (2022) Drug delivery systems based on Pluronic micelles with antimicrobial activity. Polymers 14(15):3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preeti, Radhakrishnan VS, Mukherjee S, Mukherjee S, Singh SP, Prasad T (2020) ZnO quantum dots: broad spectrum microbicidal agent against multidrug resistant pathogens E. coli and C albicans. Front Nanotechnol 2:576342

    Article  Google Scholar 

  • Price CI, Horton JW, Baxter CR (1990) Topical liposomal delivery of antibiotics in soft tissue infection. J Surg Res 49:174–178

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Gunawan P, Xu R, Chang MW (2012) Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chem Eng Sci 84:552–556

    Article  CAS  Google Scholar 

  • Quatrin PM, Verdi CM, de Souza ME, de Godoi SN, Klein B, Gundel A, Wagner R, de Almeida Vaucher R, Ourique AF, Santos RCV (2017) Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb Pathog 112:230–242

    Article  CAS  PubMed  Google Scholar 

  • Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152

    Article  CAS  PubMed  Google Scholar 

  • Rajendiran K, Zhao Z, Pei DS, Fu A (2019) Antimicrobial activity and mechanism of functionalized quantum dots. Polymers 11(10):1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Ranpariya B, Salunke G, Karmakar S, Babiya K, Sutar S, Kadoo N, Kumbhakar P, Ghosh S (2021) Antimicrobial synergy of silver-platinum nanohybrids with antibiotics. Front Microbiol 11:610968

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro AI, Dias AM, Zille A (2022) Synergistic effects between metal nanoparticles and commercial antimicrobial agents: a review. ACS Appl Nano Mater 5(3):3030–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy P, Bhat VS, Saha S, Sengupta D, Das S, Datta S, Hegde G (2021) Mesoporous carbon nanospheres derived from agro-waste as novel antimicrobial agents against gram-negative bacteria. Environ Sci Pollut Res 28:13552–13561

    Article  CAS  Google Scholar 

  • Rukholm G, Mugabe C, Azghani AO, Omri A (2006) Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time–kill study. Int J Antimicrob Agents 27(3):47–252

    Article  Google Scholar 

  • Ruz MEM, Simoes SI, Corvo ML, Martins MBF, Gaspar MM (2016) Drug delivery nanoparticles formulation and characterization. In: Formulation of NPDDS for macromolecules, vol 191, pp 35–49

    Google Scholar 

  • Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN (2016) Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalin Water Treat 57(39):18379–18390

    Article  CAS  Google Scholar 

  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanmaterials 6(4):71

    Article  Google Scholar 

  • Shams N, Sahari MA (2016) Nanoemulsions: preparation, structure, functional properties and their antimicrobial effects. Appl Food Biotechnol 3:138–149

    CAS  Google Scholar 

  • Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS (2021) Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7(3):06456

    Article  Google Scholar 

  • Shoeb M, Singh BR, Khan JA, Khan W, Singh BN, Singh HB, Naqvi AH (2013) ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv Nat Sci Nanosci Nanotechnol 4(3):035015

    Article  CAS  Google Scholar 

  • Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Sahoo AK, Samanta SK (2020) Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep 25:00427

    Google Scholar 

  • Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, Bonsignore L, Fadda AM (2005) Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm 59(1):161–168

    Article  CAS  PubMed  Google Scholar 

  • Sobhani Z, Samani SM, Montaseri H, Khezri E (2017) Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull 7(3):427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Bayati P, Gupta M, Elahinia M, Haghshenas M (2021) Fracture of magnesium matrix nanocomposites—a review. Int J Lightweight Mater Manuf 4(1):67–98

    CAS  Google Scholar 

  • Sonneville-Aubrun O, Simonnet JT, L'alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108:145–149

    Article  PubMed  Google Scholar 

  • Spellberg B, Blaser M, Guidos R, Boucher H, Bradley J (2011) Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis 52(Suppl. 5):397–S428

    Google Scholar 

  • Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR (2020) Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomol Ther 10(1):89

    CAS  Google Scholar 

  • Stanić V, Tanasković SB (2020) Antibacterial activity of metal oxide nanoparticles. In: Nanotoxicity, pp 241–274

    Chapter  Google Scholar 

  • Su Y, Zhao L, Meng F, Qiao Z, Yao Y, Luo J (2018) Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater Sci Eng C 93:921–930

    Article  CAS  Google Scholar 

  • Sun H, Gao N, Dong K, Ren J, Qu X (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210

    Article  CAS  PubMed  Google Scholar 

  • Sundara Selvam PS, Chinnadurai GS, Ganesan D, Perumal P, Kandan V (2021) Cadmium oxide-zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J Inorg Organomet Polym Mater 31:816–835

    Article  CAS  Google Scholar 

  • Tanase MA, Raducan A, Oancea P, Ditu LM, Stan M, Petcu C, Scomoroscenco C, Ninciuleanu CM, Nistor CL, Cinteza LO (2021) Mixed Pluronic—Cremophor polymeric micelles as nanocarriers for poorly soluble antibiotics—the influence on the antibacterial activity. Pharmaceutics 13:435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayeb HH, Moqaddam SA, Hasaballah NH, Felimban RI (2022) Development of nanoemulsions for the delivery of hydrophobic and hydrophilic compounds against carbapenem-resistant Klebsiella pneumoniae. RSC Adv 12(40):26455–26462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira-Santos R, Gomes M, Gomes LC, Mergulhao FJ (2021) Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 24(1):102001

    Article  CAS  PubMed  Google Scholar 

  • Vagos MR, Gomes M, Moreira JM, Soares OS, Pereira MF, Mergulhão FJ (2020) Carbon nanotube/poly (Dimethylsiloxane) composite materials to reduce bacterial adhesion. Antibiotics 9(8):434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 12:3941–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yu S, Lin Y, Zou P, Chai G, Yu HH, Wickremasinghe H, Shetty N, Ling J, Li J (2018) Co-delivery of ciprofloxacin and Colistin in liposomal formulations with enhanced in vitro antimicrobial activities against multidrug resistant Pseudomonas aeruginosa. Pharm Res 35:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li B, Qiu L, Qiao X, Yang H (2022) Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 16(1):1–12

    Article  Google Scholar 

  • Xi Y, Song T, Tang S, Wang N, Du J (2016) Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules 17(12):3922–3930

    Article  CAS  PubMed  Google Scholar 

  • Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, Tian L, Jan SU, Boddula R, Guo B, Liu Q (2019) Antibacterial carbon-based nanomaterials. Adv Mater 31(45):1804838

    Article  CAS  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  PubMed  PubMed Central  Google Scholar 

  • Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull MK, Bradbury M, Murphy AB, Ostrikov KK (2015) The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv 5(7):5142–5148

    Article  CAS  Google Scholar 

  • Zare-Zardini H, Amiri A, Shanbedi M, Memarpoor-Yazdi M, Asoodeh A (2013) Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surf Interface Anal 45(3):51–755

    Article  Google Scholar 

  • Zhao C, Wu L, Wang X, Weng S, Ruan Z, Liu Q, Lin L, Lin X (2020) Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon 163:70–84

    Article  CAS  Google Scholar 

  • Zhao D, Ma Y, Wang W, Xiang Q (2023) Antibacterial activity and mechanism of cinnamon essential oil nanoemulsion against pseudomonas deceptionensis CM2. Heliyon 9(9):19582–19592

    Article  Google Scholar 

  • Zheng H, Ji Z, Roy KR, Gao M, Pan Y, Cai X, Wang L, Li W, Chang CH, Kaweeteerawat C, Chen C (2019) Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance. ACS Nano 13(10):11488–11499

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, von dem Bussche A, Yi X, Qiu Y, Wang Z, Weston P, Hurt RH, Kane AB, Gao H (2016) Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci 113(44):12374–12379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Xu J, Wang Y, Chen C, Gu H, Chai Y, Wang Y (2020) Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res 13:389–400

    Article  CAS  Google Scholar 

  • Zomorodian K, Veisi H, Mousavi SM, Ataabadi MS, Yazdanpanah S, Bagheri J, Mehr AP, Hemmati S, Veisi H (2018) Modified magnetic nanoparticles by PEG-400-immobilized ag nanoparticles (Fe3O4@ PEG–ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. Int J Nanomedicine 13:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Kouser, M., Gupta, M. (2024). Nanomaterials in the Development of Advanced Antimicrobial Agents. In: Wani, M.Y., Wani, I.A., Rai, A. (eds) Nanotechnology Based Strategies for Combating Antimicrobial Resistance . Springer, Singapore. https://doi.org/10.1007/978-981-97-2023-1_16

Download citation

Publish with us

Policies and ethics