Skip to main content
Log in

Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mounting threat of antibiotic-resistant bacterial infections has made it imperative to develop innovative antibacterial strategies. Here we propose a novel antibacterial nanoplatform of silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes constructed via a N-[3-(trimethoxysilyl)propyl]ethylene diamine (TSD)-mediated method (SWCNTs@mSiO2-TSD@Ag). In this system, the outer mesoporous silica shells are able to improve the dispersibility of SWCNTs, which will increase their contact area with bacteria cell walls. Meanwhile, the large number of mesopores in silica layers act as microreactors for in situ synthesis of Ag NPs with controlled small size and uniform distribution, which induces an enhanced antibacterial activity. Compared with TSD modified mesoporous silica coated single-walled carbon nanotubes (SWCNTs@mSiO2-TSD) and commercial Ag NPs, this combination nanosystem of SWCNTs@mSiO2-TSD@Ag exhibits much stronger antibacterial performance against multi-drug-resistant bacteria Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro through damaging the bacterial cell membranes and a fast release of silver ions. Furthermore, the in vivo rat skin infection model verifies that SWCNTs@mSiO2-TSD@Ag have remarkably improved abilities of bacterial clearance, wound healing promoting as well as outstanding biocompatibility. Therefore, this novel nanoplatform indicates promising potentials as a safe and powerful tool for the treatment of clinical drug-resistant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol.2013, 31, 177–184.

    CAS  Google Scholar 

  2. Zhou, J.L.; Xiang, H.X.; Zabihi, F.; Yu, S. L.; Sun, B.; Zhu, M. F. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res.2019, 12, 1453–1460.

    CAS  Google Scholar 

  3. Bassetti, M.; Ginocchio, F.; Mikulska, M. New treatment options against gram-negative organisms. Crit Care2011, 15, 215.

    Google Scholar 

  4. Yang, X.L.; Zhang, L.M.; Jiang, X. Y. Aminosaccharide-gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus Nano Res.2018, 11, 6237–6243.

    CAS  Google Scholar 

  5. Conly, J.; Johnston, B. Where are all the new antibiotics? The new antibiotic paradox. Can J Infect Dis Med Microbiol. 2005, 16, 159–160.

    Google Scholar 

  6. Sun, P.P.; Zhang, Y.; Ran, X.; Liu, C.Y.; Wang, Z.Z.; Ren, J.S.; Qu, X. G. Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria. Nano Res.2018, 11, 3762–3770.

    CAS  Google Scholar 

  7. Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv.2014, 4, 3974–3983.

    CAS  Google Scholar 

  8. Huang, F.; Gao, Y.; Zhang, Y.M.; Cheng, T.J.; Ou, H.L.; Yang, L.J.; Liu, J.J.; Shi, L.Q.; Liu, J. F. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces2017, 9, 16880–16889.

    CAS  Google Scholar 

  9. Xiu, Z.M.; Zhang, Q.B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett.2012, 12, 4271–4275.

    CAS  Google Scholar 

  10. Samberg, M.E.; Orndorff, P.E.; Monteiro-Riviere, N. A. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology2011, 5, 244–253.

    CAS  Google Scholar 

  11. Chen, J.; Wang, F. Y. K.; Liu, Q.M.; Du, J. Z. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun.2014, 50, 14482–14493.

    CAS  Google Scholar 

  12. Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, P. K. H.; Chiu, J.F.; Che, C. M. Silver nanoparticles: Partial oxidation and antibacterial activities. J Biol Inorg Chem.2007, 12, 527–534.

    CAS  Google Scholar 

  13. Qing, Y.A.; Cheng, L.; Li, R.Y.; Liu, G.C.; Zhang, Y.B.; Tang, X.F.; Wang, J.C.; Liu, H.; Qin, Y. G. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine2018, 13, 3311–3327.

    CAS  Google Scholar 

  14. Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H. L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014, 11, 11.

    Google Scholar 

  15. Dosunmu, E.; Chaudhari, A.A.; Singh, S.R.; Dennis, V.A.; Pillai, S. R. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: A potential mechanism for their antimicrobial effect. Int J Nanomedicine2015, 10, 5025–5034.

    CAS  Google Scholar 

  16. Shao, W.; Liu, X.F.; Min, H.H.; Dong, G.H.; Feng, Q.Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces2015, 7, 6966–6973.

    CAS  Google Scholar 

  17. Tian, Y.; Qi, J.J.; Zhang, W.; Cai, Q.; Jiang, X. Y. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces2014, 6, 12038–12045.

    CAS  Google Scholar 

  18. Chen, H.Q.; Wang, B.; Gao, D.; Guan, M.; Zheng, L.N.; Ouyang, H.; Chai, Z.F.; Zhao, Y.L.; Feng, W. Y. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small2013, 9, 2735–2746.

    CAS  Google Scholar 

  19. Hong, G.S.; Diao, S.; Antaris, A.L.; Dai, H. J. Carbon Nanomaterials for biological imaging and Nanomedicinal therapy. Chem Rev.2015, 115, 10816–10906.

    CAS  Google Scholar 

  20. Nie, C.X.; Cheng, C.; Peng, Z.H.; Ma, L.; He, C.; Xia, Y.; Zhao, C. S. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J Mater Chem B2016, 4, 2749–2756.

    CAS  Google Scholar 

  21. Wang, N.; Pandit, S.; Ye, L.L.; Edwards, M.; Mokkapati, V. R. S. S.; Murugesan, M.; Kuzmenko, V.; Zhao, C.H.; Westerlund, F.; Mijakovic, I. et al. Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon2017, 111, 402–410.

    CAS  Google Scholar 

  22. Chaudhari, A.A.; Jasper, S.L.; Dosunmu, E.; Miller, M.E.; Arnold, R.D.; Singh, S.R.; Pillai, S. Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnol. 2015, 13, 23.

    Google Scholar 

  23. Wang, Y.; Gu, H. C. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater.2015, 27, 576–585.

    CAS  Google Scholar 

  24. Wu, S.H.; Mou, C.Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev.2013, 42, 3862–3875.

    CAS  Google Scholar 

  25. Qasim, M.; Singh, B.R.; Naqvi, A.H.; Paik, P.; Das, D. Silver nanoparticles embedded mesoporous SiO2 nanosphere: An effective anticandidal agent against Candida albicans 077. Nanotechnology2015, 26, 285102.

    CAS  Google Scholar 

  26. Wang, Y.; Song, H.; Yu, C.Z.; Gu, H. C. From helixes to mesos-tructures: Evolution of mesoporous silica shells on single-walled carbon nanotubes. Chem Mat. 2016, 28, 936–942.

    Google Scholar 

  27. Liu, R.; Wang, X.D.; Ye, J.; Xue, X.M.; Zhang, F.R.; Zhang, H.C.; Hou, X.M.; Liu, X.L.; Zhang, Y. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect. Nanotechnology2018, 29, 105704.

    Google Scholar 

  28. Wang, Y.; Ding, X.L.; Chen, Y.; Guo, M.Q.; Zhang, Y.; Guo, X.K.; Gu, H. C. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials2016, 101, 207–216.

    CAS  Google Scholar 

  29. Ruparelia, J. P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nano-particles. Acta Biomater. 2008, 4, 707–716.

    CAS  Google Scholar 

  30. Kirchhoff, C.; Cypionka, H. Boosted membrane potential as Bioenergetic response to anoxia in Dinoroseobacter shibae Front Microbiol. 2017, 8, 695.

    Google Scholar 

  31. Novo, D.; Perlmutter, N.G.; Hunt, R.H.; Shapiro, H. M. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry1999, 35, 55–63.

    CAS  Google Scholar 

  32. Kugelberg, E.; Norström, T.; Petersen, T.K.; Duvold, T.; Andersson, D.I.; Hughes, D. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother. 2005, 49, 3435–3441.

    CAS  Google Scholar 

  33. Samy, R.P.; Gopalakrishnakone, P.; Houghton, P.; Ignacimuthu, S. Purification of antibacterial agents from Tragia involucrata—A popular tribal medicine for wound healing. J Ethnopharmacol. 2006, 107, 99–106.

    CAS  Google Scholar 

  34. Zhu, Y.; Wang, Y.M.; Jia, Y.C.; Xu, J.; Chai, Y. M. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019, 27, 324–334.

    Google Scholar 

  35. Liong, M.; France, B.; Bradley, K.A.; Zink, J. I. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater.2009, 21, 1684–1689.

    CAS  Google Scholar 

  36. Song, J.; Kang, H.; Lee, C.; Hwang, S.H.; Jang, J. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl Mater Interfaces2012, 4, 460–465.

    CAS  Google Scholar 

  37. Cui, G.J.; Sun, Z.B.; Li, H.Z.; Liu, X.N.; Liu, Y.; Tian, Y.X.; Yan, S. Q. Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles. J Mater Chem A2016, 4, 1771–1783.

    CAS  Google Scholar 

  38. Song, Z.L.; Ma, Y.J.; Xia, G.G.; Wang, Y.; Kapadia, W.; Sun, Z.Y.; Wu, W.; Gu, H.C.; Cui, W.G.; Huang, X. Y. In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded elec-trospun fibrous membranes. J Mat Chem B2017, 5, 7632–7643.

    CAS  Google Scholar 

  39. Shi, X.H.; Kong, Y.; Gao, H. J. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane. Acta Mech Sin. 2008, 24, 161–169.

    CAS  Google Scholar 

  40. Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials2013, 6, 2295–2350.

    CAS  Google Scholar 

  41. Holt, K.B.; Bard, A. J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry2005, 44, 13214–13223.

    CAS  Google Scholar 

  42. Long, Y.M.; Hu, L.G.; Yan, X.T.; Zhao, X.C.; Zhou, Q.F.; Cai, Y.; Jiang, G. B. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli Int J Nano-medicine2017, 12, 3193–3206.

    CAS  Google Scholar 

  43. Seong, M.J.; Lee, D. G. Silver Nanoparticles against Salmonella enterica serotype Typhimurium: Role of inner membrane dysfunction. Curr Microbiol. 2017, 74, 661–670.

    CAS  Google Scholar 

  44. Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. S. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol. 2011, 45, 4422–4428.

    CAS  Google Scholar 

  45. Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D. A. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006, 355, 666–674.

    CAS  Google Scholar 

  46. Edwards, R.; Harding, K. G. Bacteria and wound healing. Curr Opin Infect Dis. 2004, 17, 91–96.

    Google Scholar 

  47. Siddiqui, A.R.; Bernstein, J. M. Chronic wound infection: Facts and controversies. Clin Dermatol. 2010, 28, 519–526.

    Google Scholar 

  48. Kingsley, A. The wound infection continuum and its application to clinical practice. Ostomy Wound Manage2003, 49, 1–7.

    Google Scholar 

  49. Park, S. Y.; Lee, H.U.; Lee, Y.C.; Kim, G.H.; Park, E.C.; Han, S.H.; Lee, J.G.; Choi, S.; Heo, N.S.; Kim, D. L. et al. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Mater Sci Eng C2014, 42, 757–762.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51802192, 81802156, and 81772338), the Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2017ZD05), Natural Science Foundation of Shanghai (No. 19ZR1474800), Shanghai Sailing Program (No. 18YF1410700), and Innovation Research Plan supported by Shanghai Municipal Education Commission (No. ZXWF082101). The authors would like to acknowledge the Instrumental Analysis Center of Shanghai Jiao Tong University for the characterization of materials, and Juanxi Gu of Shanghai Jiao Tong University for her graphic assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimin Chai or Yao Wang.

Electronic Supplementary Material

12274_2020_2621_MOESM1_ESM.pdf

Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xu, J., Wang, Y. et al. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 13, 389–400 (2020). https://doi.org/10.1007/s12274-020-2621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2621-3

Keywords

Navigation