Skip to main content

Advertisement

Log in

Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24:4340–4346

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of bacillus subtilis. J Bacteriol 141:876–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya S, Alkharfy KM, Janardhanan R, Mukhopadhyay D (2012) Nanomedicine: pharmacological perspectives. Nanotechnol Rev 1:235–253

    Article  CAS  Google Scholar 

  • Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13:127–138. doi:10.1007/s11051-010-0010-7

    Article  CAS  Google Scholar 

  • Borkow G, Gabbay J (2009) Copper: an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278

    CAS  Google Scholar 

  • Chandran CB, Subramanian TV, Felse PA (2001) Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions. Biochem Eng J 8:31–37

    Article  CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23: 085103 (11 pp)

    Google Scholar 

  • Chattopadhyay DP, Patel BH (2010) Effect of nanosized colloidal copper on cotton fabric. J Eng Fibers Fabrics 5:1–6

    CAS  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Cohen-Karni T, Langer R, Kohane DS (2012) The smartest materials: the future of nanoelectronics in medicine. ACS Nano 6:6541–6545

    Article  CAS  PubMed  Google Scholar 

  • Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. J Bionanosci 4:82–86

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials, and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity, and possible mechanisms of action. Braz Chem Soc 21:949–959

    Article  CAS  Google Scholar 

  • Esteban-Cubillo A, Pecharroman C, Aguilar E, Santaren J, Moya J (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20: 505701 (6 pp)

    Google Scholar 

  • Fujimori Y, Sato T, Hayata T, Nagao T, Nakayama M, Nakayama T, Sugamata R, Suzuki K (2012) Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl Env Microbiol 78(4):951–955

    Article  CAS  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8918

    Article  CAS  PubMed  Google Scholar 

  • Gang L, Xiaohong L, Zhijun Z (2011) Preparation methods of copper nanomaterials. Prog Chem 23:1644–1656

    Google Scholar 

  • Giannossa LC, Longano D, Ditaranto N, Nitti MA, Paladini F, Pollini M, Rai M, Sannino A, Valentini A, Cioffi N (2013) Metal nanoantimicrobials for textile applications. Nanotechnol Rev 2(3):307–331

    Article  CAS  Google Scholar 

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bio 7(2):833–839

    Google Scholar 

  • Gyawali R, Ibrahim SA, Abu-Hasfa SH, Smqadri SQ, Haik Y (2011) Antimicrobial activity of copper alone and in combination with lactic acid against Escherichia coli O157:H7 in laboratory medium and on the surface of lettuce and tomatoes. J Pathogens 9 pages (Article ID 650968)

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. Latex and their cytotoxicity on tumor cells. Colloids Surface B: Biointerf 95:284–288

    Article  CAS  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8(6):3191–3196

    Article  CAS  PubMed  Google Scholar 

  • Ingle AP, Gade AK, Pierrat S, Sönnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen-mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9

    Article  CAS  Google Scholar 

  • Kim J (2011) Advances in nanotechnology and the environment. Pan Stanford Publicaton, pp. 232

  • Kim J, Cho H, Ryu S, Choi M (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006a) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee DK, Jo BG, Jeong JH, Kang YS (2006b) Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Coll Surf A: Physiochem Eng Aspects 284–285:364–368

    Google Scholar 

  • Kim YS, Kim KK, Shin S, Park SM, Hah SS (2012) Comparative toxicity studies of ultra-pure Ag, Au, Co, and Cu nanoparticles generated by laser ablation in biocompatible aqueous solution. Bull Korean Chem Soc 33:3265–3268

    Article  CAS  Google Scholar 

  • Laha D, Pramanik A, Maity J, Mukherjee A, Pramanik P, Laskar A, Karmakar P (2013) Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta S0304–4165(13):00355–3. doi:10.1016/j.bbagen.2013.08.011

    Google Scholar 

  • Lee HJ, Lee G, Jang NR, Yun JM, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374

    CAS  Google Scholar 

  • Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88(11):1971–1977. doi:10.1002/jctb.4052

    CAS  Google Scholar 

  • Lin YE, Vidic RD, Stout JE, Mccartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32(7):1997–2000

    Article  CAS  Google Scholar 

  • Liu Q, Zhou D, Yamamoto Y, Ichino I, Okido M (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Metals Soc China 22:117–123

    Article  CAS  Google Scholar 

  • Llorens A, Lloret E, Picouet P, Fernandez A (2012) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N (2012) Synthesis and antimicrobial activity of copper nanomaterials. In: Cioffi N, Rai M (eds) Nano-Antimicrobials: Progress and Prospects. Springer, Germany, pp 85–118

    Chapter  Google Scholar 

  • Mahapatra SS, Karak N (2009) Hyperbranched polyamine/Cu nanoparticles for epoxy thermoset. J Macromol Sci 46:296–303

    Article  CAS  Google Scholar 

  • Majumber DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Inter J Eng Sci Technol 4:4380–4389

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Tsukahara Y, Sakata T, Mori H, Kanbe Y, Bessho H, Wada Y (2007a) Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bull Chem Soc Japan 80:224–232

    Article  CAS  Google Scholar 

  • Nakamura T, Tsukahara Y, Yamauchi T, Sakata T, Mori H, Wada Y (2007b) Preparation of Ag core–Cu shell nanoparticles by microwave-assisted alcohol reduction process. Chem Lett 36(1):154–155

    Article  CAS  Google Scholar 

  • Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    Article  CAS  PubMed  Google Scholar 

  • Petranovskii V, Panina L, Bogomolova E, Belostotskaya G (2003) Microbiologically active nanocomposite media. Proceed SPIE 5218:244–255

    Article  CAS  Google Scholar 

  • Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4(2):150–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, M-ul Hasan M (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  • Rai MK, Yadav AP, Gade AK (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nano-weapon against multidrug-resistant bacteria. J App Microbiol 112:841–852

    Article  CAS  Google Scholar 

  • Ramanathan R, Bhargava SK, Bansal V (2011) Biological synthesis of copper/copper oxide nanoparticles. Chemca Conference 466. http://www.conference.net.au/chemeca, (accessed on August 14, 2013)

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109:1403–1415

    Article  PubMed  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  PubMed  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2:554–568

    Google Scholar 

  • Shionoiri N, Sato T, Fujimori Y, Nakayama T, Nemoto M, Matsunaga T, Tanaka T (2012) Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J Biosci Bioeng 113(5):580–586

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8(8):e69534. doi:10.1371/journal.pone.0069534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Surendiran A, Sandhiya S, Pradhan SC, Adithan C (2009) Novel applications of nanotechnology in medicine. Indian J Med Res 130:689–701

    CAS  PubMed  Google Scholar 

  • Tanejia SK, Dhiman RK (2011) Prevention and management of bacterial infections in Cirrhosis. Int J Hepatol Article ID 784540, 7 pages

    Google Scholar 

  • Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver, and copper nanoparticles. World J Bio Chem 4(3):35–63

    Google Scholar 

  • Teli MD, Sheikh J (2013) Modified bamboo rayon–copper nanoparticle composites as antibacterial textiles. Int J Bio Macromol 61:302–307

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Bio Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Theivasanthi T, Alagar M (2011) Studies of copper nanoparticles effects on microorganisms. Annals Biol Res 2(3):368–373

    CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  PubMed  Google Scholar 

  • Umer A, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. NANO: Brief Reports Rev 7:1230005

    Article  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp. For development of antimicrobial textiles. Global J Biotechnol Biochem 5(3):153–160

    CAS  Google Scholar 

  • Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Junus WMZW (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936

    Article  CAS  PubMed  Google Scholar 

  • Valodkar V, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 128:83–89

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM-J Miner Met Mater Soc 62:102–104

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    Article  CAS  Google Scholar 

  • Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin SQ (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147:516–519

    Article  CAS  Google Scholar 

  • Xu P, Xu J, Liu S, Ren G, Yang Z (2012) In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress. J Nanopart Res 14: 906 (1-9)

    Google Scholar 

  • Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Zhang QL, Yang ZM, Ding BJ, Lan XZ, Guo YJ (2010) Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Tran Nonferrous Metals Soc China 20:s240–s244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

API is highly thankful to the Department of Science and Technology, Government of India, New Delhi for providing financial assistance in the form of major research project under Fast-Track scheme for young scientist. MKR thankfully acknowledges the financial support by FAPESP to visit Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, Campinas, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingle, A.P., Duran, N. & Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol Biotechnol 98, 1001–1009 (2014). https://doi.org/10.1007/s00253-013-5422-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5422-8

Keywords

Navigation