Skip to main content

Microbial Remediation Technologies for Hazardous Metals in Soil, Sediments, and Water

  • Chapter
  • First Online:
Harnessing Microbial Potential for Multifarious Applications

Abstract

A gradual rise in the level of hazardous metal viz., arsenic, lead, cadmium, nickel, etc., concentrations in soil, sediments, and water has become one of the most severe problems in India and worldwide over the last few decades. Many studies have also revealed the fate, transport, bioaccumulation, ecotoxicity, and health risks of these metal contaminants in humans, animals, and soil biomass. Therefore, various conventional and modern in-situ and ex-situ technologies have been proposed and developed to control the increasing levels of hazardous metals. However, only a few studies have investigated microbial-based technologies and their processes for the remediation of these metal contaminants to prevent health hazards in plant, animal, and soil ecosystems. Further, technological breakthroughs in microbe-based bioremediation have pushed bioremediation as a promising alternative to standard approaches. Therefore, in this chapter, we aim to review all the recent advancements in the remediation of metals, address the status of hazardous metals in soil, sediments, and water, and discuss their impact on human and animal health. Furthermore, this chapter also discusses the microbial technologies currently available for removing metals from soil, sediments, and water, followed by their management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Mazumder P, Haq, I, Das, A, Kalamdhad A (2021) Microbial remediation of soil and water metal contaminants. In: Shah M, Rodriguez-Couto S (eds), vol 2021, Elsevier, pp 523–536. Doi: https://doi.org/10.1016/B978-0-12-822503-5.00006-0

  • Giri A, Bharti VK, Kalia S, Kumar B, Chaurasia OP (2021) Health-risk assessment of heavy metals through cow milk consumption in trans-Himalayan high altitude region. Biol Trace Elem Res 199:4572–4581

    Article  Google Scholar 

  • Charan G, Bharti VK, Giri A, Kumar P (2023) Evaluation of physico-chemical and heavy metals status in irrigation, stagnant, and Indus River water at the trans-Himalayan region. Discover Water 3:3. https://doi.org/10.1007/s43832-023-00027-z

    Article  Google Scholar 

  • Yu Z, Tang J (2022) Quality improvement in vegetable greenhouse by cadmium pollution remediation. J Food Qual 2022:8335753

    Article  Google Scholar 

  • Eqani S, Khalid R, Bostan N, Saqib Z, Mohmand J, Rehan M, Ali N, Katsoyiannis I, Shen H (2016) Human lead (Pb) exposure via dust from different land use settings of Pakistan: a case study from two urban mountainous cities. Chemosphere 155:259–265

    Article  Google Scholar 

  • Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Simal-Gandara J (2022) Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci 34:101865

    Article  Google Scholar 

  • Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam T (2023) Biological and green remediation of heavy metal contaminated water and soils: a state-of-the-art review. Chemosphere 332:138861

    Article  Google Scholar 

  • Li S, Xu S, Niu Q et al (2016) Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling. Hum Exp Toxicol 35:491–500. https://doi.org/10.1177/0960327115595682

    Article  Google Scholar 

  • Hayyat MS, Adnan M, Awais M, Bilal HM, Khan B, Rahman HA (2020) Effect of heavy metal (Ni) on plants and soil: a review. Int J Appl Res 6:313–318

    Google Scholar 

  • Garai P, Banerjee P, Mondal P, Saha NC (2021) Effect of heavy metals on fishes: toxicity and bioaccumulation. J Clin Toxicol S18:1–10

    Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Env Res Public Health 17:3782. https://doi.org/10.3390/ijerph17113782

    Article  Google Scholar 

  • Shah MP (Ed) (2020) Microbial bioremediation & biodegradation. Springer, pp IX-550. https://doi.org/10.1007/978-981-15-1812-6

  • Abo-Alkasem MI, Hassan NH, Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent 47:1–15. https://doi.org/10.1186/s42269-023-01006-z

    Article  Google Scholar 

  • Sayqal A, Ahmed OB (2021) Advances in heavy metal bioremediation: an overview. Appl Bionics Biomech 2021:1609149

    Article  Google Scholar 

  • Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Vernet JP (ed) Vol 4. Elsevier, London, pp 137–185

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals in phytoremediation of toxic metals: using plants to clean up the environment. In: Raskin I, Ensley BD (eds) 2000. Wiley, NY, USA, pp 53–70

    Google Scholar 

  • Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 24:1–15

    Google Scholar 

  • Taiz L, Zeiger E (2002) Photosynthesis: physiological and ecological considerations. Plant Physiol 9:172–174

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camella sinensis (L.). O Kuntze. Environ Toxicol 22:368–374

    Article  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over-expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Inn Engg Manage 5:56–66

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co+2, Ni+2, and Cd+2 on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Planta 50:653–659

    Article  Google Scholar 

  • Raikwar MK, Kumar P, Singh M, Singh A (2008) Toxic effect of heavy metals in livestock health. Vet World 1:28

    Article  Google Scholar 

  • Pandey G, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fishery Sci 2:17–23

    Google Scholar 

  • Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C (2022) Effects of heavy metals on fish physiology-a review. Chemosphere 300:134519. https://doi.org/10.1016/j.chemosphere.2022.134519

    Article  Google Scholar 

  • Afrin R, Mia MY, Ahsan MA, Akbor A (2015) Concentration of heavy metals in available fish species (bain, Mastacembelus armatus; taki, Channa punctatus and bele, Glossogobius giuris) in the Turag river, Bangladesh. Pak J Sci Ind Res Series B: Biological Sci 58:104–110

    Google Scholar 

  • Mahmood Q, Wang J, Pervez A, Meryem SS, Waseem M, Ullah Z (2015) Health risk assessment and oxidative stress in workers exposed to welding fumes. Toxicol Environ Chem 97:634–639

    Article  Google Scholar 

  • Lu H, Shi X, Costa M et al (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem 279:45–67. https://doi.org/10.1007/s11010-005-8215-2

    Article  Google Scholar 

  • Wilk A, Kalisińska E, Danuta IK, Maciej R, Jacek R, Kazimierz C, Marcin S, Natalia ŁWA, Kalisinska E, Kosik-Bogacka DI (2017) Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Env Geochem Health 39:889–899

    Article  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress Part I: mechanisms involved in metal-induced oxidative damage. Curr Topics Med Chem 1:529–539

    Article  Google Scholar 

  • Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Kawano T (2021) Arsenic and human health: genotoxicity, epigenomic effects, and cancer signaling. Biol Trace Elem Res 200:988–1001. https://doi.org/10.1007/s12011-021-02719-w

    Article  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1:14

    Google Scholar 

  • Kumar M, Seth A, Singh AK, Rajput MS, Sikandar M (2021) Remediation strategies for heavy metals contaminated ecosystem: a review. Environ Sustain Indic 12:100155

    Google Scholar 

  • Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain MM (2022) A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv 7:100168

    Article  Google Scholar 

  • Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28:220631

    Article  Google Scholar 

  • Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK (2022) Bioremediation of heavy metals by Rhizobacteria. Appl Biochem Biotechnol 195:4689–4711

    Article  Google Scholar 

  • Sreedevi PR, Suresh K, Jiang G (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Proc Engg 48:102884

    Article  Google Scholar 

  • Tarekegn MM, Salilih FZ, Ishetu AI, Yildiz F (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Microbial technologies for heavy metal remediation: efect of process conditions and current. Food Sci Technol 6:1783174

    Google Scholar 

  • Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73:1163–1172

    Article  Google Scholar 

  • Chipasa K, Mędrzycka K (2006) Behaviour of lipids in biological wastewater treatment processes. J Inds Microbiol Biotechnol 33:635–645

    Article  Google Scholar 

  • Stroo HF, Leeson A, Ward CH (2013) Bioaugmentation for groundwater remediation. In: Stroo H, Leeson A, Ward C (eds) 2013. Springer, New York, pp 117–140

    Google Scholar 

  • Sivakumar D, Kandaswamy A, Gomathi V, Rajeshwaran R, Murugan N (2014) Bioremediation studies on reduction of heavy metals toxicity. Pollution Res 33:553–558

    Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2018) Microorganism remediation strategies towards heavy metals. Chem Engg J 360:1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

    Article  Google Scholar 

  • Hussein H, Ibrahim SF, Kandeel K, Moawad H (2004) Biosorption of heavy metals from waste water using Pseudomonas sp. Elect J Biotechnol 7:30–37

    Google Scholar 

  • Qamar N, Rehman Y, Hasnain S (2017) Arsenic resistant and plant growth promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. J Appl Microbiol 123:748–758. https://doi.org/10.1111/jam.13535

    Article  Google Scholar 

  • Kanamarlapudi SLRK, Chintalpudi VK, Muddada S (2018) Application of biosorption for removal of heavy metals from wastewater. Biosorption 18:70–116

    Google Scholar 

  • Redha AA (2020) Removal of heavy metals from aqueous media by biosorption. Arab J Basic Appl Sci 27:183–193

    Article  Google Scholar 

  • Al-Garni SM, Ghanem KM, Ibrahim AS (2010) Biosorption of mercury by capsulated and slime layer forming Gram-ve bacilli from an aqueous solution. Afr J Biotechnol 9:6413–6421

    Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Sole A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol 126:233–237

    Article  Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336

    Article  Google Scholar 

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, Wang B, Sun L (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038. https://doi.org/10.1155/2018/2568038

    Article  Google Scholar 

  • Bhattacharya A, Naik SN, Khare SK (2018) Harnessing the biomineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). J Environ Manage 215:143–152

    Article  Google Scholar 

  • Bhatt K, Maheshwari DK (2020) Insights into zinc-sensing metalloregulator “Zur” deciphering mechanism of zinc transportation in Bacillus spp. by modeling, simulation and molecular docking. J Biomol Struct Dyn 14:1–16

    Google Scholar 

  • Sher S, Hussain SZ, Rehman A (2020) Phenotypic and genomic analysis of multiple heavy metal resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 104:2243–2254

    Article  Google Scholar 

  • Sharma S, Adholeya A (2012) Hexavalent chromium reduction in tannery efuent by bacterial species isolated from tannery effluent contaminated soil. J Environ Sci Technol 5:142–154

    Article  Google Scholar 

  • Liu S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollution Res 27:16069–16085

    Article  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manag 254:109779

    Article  Google Scholar 

  • Zhang Z, Si R, Lv J, Ji Y, Chen W, Guan W, Cui Y, Zhang T (2020) Effects of extracellular polymeric substances on the formation and methylation of mercury sulfide nanoparticles. Environ Sci Technol 54(13):8061–8071

    Article  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  Google Scholar 

  • Dursun AY, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper (II), lead (II) and chromium (VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    Article  Google Scholar 

  • Zeng X, Wei S, Sun L, Jacques DA, Tang J, Lian M, Xu Z (2015) Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J Soils Sediments 15:1029–1038

    Article  Google Scholar 

  • Kariuki Z, Kiptoo J, Onyancha D (2017) Biosorption studies of lead and copper using rogers mushroom biomass Lepiota hystrix. S Afr J Chem Eng 23:62–70

    Google Scholar 

  • Priya M, Gurung N, Mukherjee K, Bose S (2014) Microalgae in removal of heavy metal and organic pollutants from soil. Microbial Biodeg Biorem 2014:519–537. https://doi.org/10.1016/b978-0-12-800021-2.00023-6

    Article  Google Scholar 

  • Ahmed DAEA, Gheda SF, Ismail GA (2021) Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environ Sci Pollut Res 28:12831–12846. https://doi.org/10.1007/s11356-020-11289-8

    Article  Google Scholar 

  • Sun W, Cheng K, Sun KY, Ma X (2021) Microbially mediated remediation of contaminated sediments by heavy metals: a critical review. Curr Poll Rep 7:201–212. https://doi.org/10.1007/s40726-021-00175-7

    Article  Google Scholar 

  • Barquilha CER, Cossich ES, Tavares CRG, Silva EA (2017) Biosorption of nickel (II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J Cleaner Prod 150:58–64

    Article  Google Scholar 

  • Sooksawat N, Meetam M, Kruatrachue M, Pokethitiyook P, Nathalang K (2013) Phytoremediation potential of charophytes: bioaccumulation and toxicity studies of cadmium, lead and zinc. J Environ Sci 25:596–604

    Article  Google Scholar 

  • Ibrahim WM, Abdel Aziz YS, Hamdy SM, Gad NS (2018) Comparative study for biosorption of heavy metals from synthetic wastewater by different types of marine algae. J Bioremed Biodegrad 9:1–425

    Article  Google Scholar 

  • Podstawczyk D, Witek-Krowiak A, Dawiec A, Bhatnagar A (2015) Biosorption of copper (II) ions by flax meal: empirical modelling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecol Eng 83:364–379

    Article  Google Scholar 

  • Li D, Xu X, Yu H, Han X (2017) Characterization of pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manag 196:8–15

    Article  Google Scholar 

  • Wang S, Liu T, Xiao X et al (2021a) Advances in microbial remediation for heavy metal treatment: a mini review. J Leather Sci Eng 3:1–10. https://doi.org/10.1186/s42825-020-00042-z

    Article  Google Scholar 

  • Wang Y, Selvamani V, Yoo IK, Kim TW, Hong SH (2021b) A novel strategy for the microbial removal of heavy metals: cell-surface display of peptides. Biotechnol Bioprocess Eng 26:1–9

    Article  Google Scholar 

  • Zeng J, Gou M, Tang Y, Li G, Sun Z, Kida K (2016) Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour Technol 218:859e866

    Google Scholar 

  • Dunbart WS (2017) Biotechnology and the mine of tomorrow. Trends Biotechnol 35:79e89

    Google Scholar 

  • Dhami NK, Quirin ME, Mukherjee A (2017) Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecol Eng 103:106–117

    Article  Google Scholar 

  • Shan B, Hao R, Xu H, Li J, Li Y, Xu X, Zhang J (2021) A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. Environ Sci Poll Res 28:30486–30498. https://doi.org/10.1007/s11356-021-14045-8

    Article  Google Scholar 

  • Jayaram S, Ayyasamy PM, Aiswarya KP, Devi MP, Rajakumar S (2022) Mechanism of microbial detoxification of heavy metals: a review. J Pure Appl Microbiol 16:1562–1574

    Article  Google Scholar 

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26

    Article  Google Scholar 

  • Jing R, Kjellerup BV (2018) Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. J Environ Sci 66:146–154

    Article  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Safety 147:102–109

    Article  Google Scholar 

  • Yan X, Liu M, Zhong J, Guo J, Wu W (2018) How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability 10:338

    Article  Google Scholar 

  • Elouzi AA, Akasha AA, Elgerbi AM, El-Baseir M, El Gammudi BA (2012) Removal of heavy metals contamination by bio-Surfactants (Rhamnolipids). J Chem Pharma Res 4:4337–4341

    Google Scholar 

  • Huang L, Pu X, Pan JF, Wang B (2013) Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere 93:1957–1964

    Article  Google Scholar 

  • Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:493383

    Article  Google Scholar 

  • Abd El-Motaleb M, El-Sabbagh S, Mohamed W, Wafy K (2020) Biosorption of Cu2+, Pb2+ and Cd2+ from wastewater by dead biomass of Streptomyces cyaneus Kw42. Int J Curr Microbiol Appl Sci 9:422–435

    Article  Google Scholar 

  • Orji OU, Awoke JN, Aja PM, Aloke C, Obasi OD, Alum EU, Oka GO (2021) Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern. Nigeria. Heliyon 7:e07512

    Article  Google Scholar 

  • Hamdan AM, Abd-El-Mageed H, Ghanem N (2021) Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci Rep 11:9314

    Article  Google Scholar 

  • Md Badrul Hisham NH, Ibrahim MF, Ramli N and Abd-Aziz S (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Mol 24: 2617

    Google Scholar 

  • Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314. 1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Cent 43:1–14

    Article  Google Scholar 

  • Sodhi KK, Kumar M, Singh DK (2020) Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl Sci 2:1–13

    Article  Google Scholar 

  • Shen Y, Zhu W, Li H, Ho SH, Chen J, Xie Y, Shi X (2018) Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Biores Technol 257:157–163

    Article  Google Scholar 

  • León-Vaz A, León R, Giráldez I, Vega JM, Vigara J (2021) Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquatic Toxicol 239:105941

    Article  Google Scholar 

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Poll Res 20:6628–6637

    Article  Google Scholar 

  • Paul A, Mukherjee SK (2016) Enterobacter asburiae KUNi5, a nickel resistant bacterium for possible bioremediation of nickel contaminated sites. Pol J Microbiol 65:115–118

    Article  Google Scholar 

  • Taran M, Fateh R, Rezaei S, Gholi MK (2019) Isolation of arsenic accumulating bacteria from garbage leachates for possible application in bioremediation. Iran J Microbiol 11:60–66

    Google Scholar 

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886

    Article  Google Scholar 

  • Tyagi D, Tyagi S, Narayan RK (2018) Bacterial bioremediation of arsenic from contaminated groundwater and soil. Eur J Biotechnol Biosci 6:45–51

    Google Scholar 

  • Kumar N, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33:27

    Google Scholar 

  • Sari A, Uluozlü D and Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa)

    Google Scholar 

  • Das S, Dash HR (2014) Microbial bioremediation. Microbial Biodeg Biorem 1–21. https://doi.org/10.1016/b978-0-12-800021-2.00001-7

  • Verma S, Bhatt P, Verma A, Mudila H, Prasher P and Rene ER (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technol Environ Policy 1–23

    Google Scholar 

  • Sánchez-Castro I, Molina L, Prieto-Fernández MÁ and Segura A (2023) Past, present and future trends in the remediation of heavy-metal contaminated soil-Remediation techniques applied in real soil-contamination events. Heliyon

    Google Scholar 

  • Vishwakarma GS, Bhattacharjee G, Gohil N, Singh V (2020) Current status, challenges and future of bioremediation. Bioremed Poll 403–415. https://doi.org/10.1016/b978-0-12-819025-8.00020-x

Download references

Acknowledgements

All the authors would like to express their gratitude towards DRDO-Defence Institute of High Altitude Research (DIHAR) and Director, DIHAR, for providing support and facilities to complete this work. The authors would also like to acknowledge Biorender.com for helping to create the diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Bharti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Bhagat, N.R., Bharti, V.K. (2024). Microbial Remediation Technologies for Hazardous Metals in Soil, Sediments, and Water. In: Bala, K., Ghosh, T., Kumar, V., Sangwan, P. (eds) Harnessing Microbial Potential for Multifarious Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-1152-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1152-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1151-2

  • Online ISBN: 978-981-97-1152-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics