Skip to main content

Phytoremediation: A Clean and Green Approach for Heavy Metal Remediation

  • Chapter
  • First Online:
Microbial Applications for Environmental Sustainability

Abstract

The buildup of heavy metals in soil has intensified the outcome of a variety of human (industrial) activities and geological cycles. Heavy metals cannot biodegrade, therefore, they remain in the surroundings, represent a danger of infiltrating the supply chain of food via agricultural plants, and may eventually accumulate within individuals due to biomagnification. Heavy metals are harmful to humans, plants, and ecosystems because they are toxic. Heavy metal ions that are still present in the soil may be accumulated by plant tissues, the biosphere, and by the various tropical levels present in the food chain. For the biosorption of metal-contaminated soil, several biological, chemical, and physical remediation approaches (both in situ and ex situ) are acknowledged. The importance of removing soil pollution cannot be emphasized. Phytoremediation allows for the environmentally beneficial replanting of soil which is contaminated with heavy metals. Increasing the efficacy of remediation with the help of plants necessitates a better knowledge of the processes behind the accumulation of heavy metals and tolerance in plants. In this review, we explain the heavy metal absorption, detoxification, and translocation, mechanisms in plants. We focus on techniques that employ microbial assistance, genetic engineering, and chelate assistance to boost the efficacy of photo extraction and phytostabilization. The limitations of effective phytoremediation and potential solutions are also covered in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11(76):14036–14043

    CAS  Google Scholar 

  • Ahmed AS, Sultana S, Habib A, Ullah H, Musa N, Hossain MB, Sarker MSI (2019) Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14(10):e0219336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed ASS, Hossain MB, Semme SA, Babu SMOF, Hossain K, Moniruzzaman M (2020) Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: a probabilistic human health risk implication. Environ Sci Pollut Res 27(30):37852–37865

    Article  CAS  Google Scholar 

  • Ahmed AS, Hossain MB, Babu SOF, Rahman MM, Sarker MSI (2021) Human health risk assessment of heavy metals in water from the subtropical river, Gomti, Bangladesh. Environ Nanotechnol Monit Manag 15:100416

    Google Scholar 

  • Ali H, Khan E (2018) What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol Environ Chem 100(1):6–19

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1

    Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111(4):811–815

    Article  CAS  Google Scholar 

  • Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484

    Article  CAS  Google Scholar 

  • Awa SH, Hadibarata T (2020) Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut 231(2):1–15

    Article  Google Scholar 

  • Baker AJ, Whiting SN (2002) In search of the holy grail: a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  PubMed  Google Scholar 

  • Banuelos GS, Ajwa HA (1999) Trace elements in soils and plants: an overview. J Environ Sci Health A 34(4):951–974

    Article  Google Scholar 

  • Beharti A (2014) Phytoremediation: as a degradation of heavy metals. Int J Eng Technol Res 2:137–139

    Google Scholar 

  • Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica 2016:1

    Article  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Kumar V (2017) Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ Sci Pollut Res 24(3):2605–2619

    Article  CAS  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • Cui Y, Du X (2011) Soil heavy-metal speciation and wheat phytotoxicity in the vicinity of an abandoned lead–zinc mine in Shangyu City, Eastern China. Environ Earth Sci 62(2):257–264

    Article  CAS  Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20(14):3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128(4):412

    CAS  PubMed  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos U, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148(1):155–165

    Article  Google Scholar 

  • Duruibe, Ogwuegbu, Egwurugwu (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi A, Hashemi H, Eslami H, Fallahzadeh RA, Khosravi R, Askari R, Ghahramani E (2018) Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor. J Environ Manag 206:707–714

    Article  CAS  Google Scholar 

  • Eid EM, Galal TM, Sewelam NA, Talha NI, Abdallah SM (2020) Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ Sci Pollut Res 27:12138–12151

    Article  CAS  Google Scholar 

  • Ekmekyapar F, Sabudak T, Seren G (2012) Assessment of heavy metal contamination in soil and wheat (Triticum aestivum L.) plant around the Çorlu–Çerkezkoy highway in Thrace region. Global NEST J 14(4):496–504

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41(3):229–248

    Article  CAS  Google Scholar 

  • Fiorentino N, Mori M, Cenvinzo V, Duri LG, Gioia L, Visconti D, Fagnano M (2018) Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital J Agron 13(1S):34–44

    Google Scholar 

  • Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017) Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremed 19(11):992–999

    Article  CAS  Google Scholar 

  • García-Delgado M, Rodríguez-Cruz MS, Lorenzo LF, Arienzo M, Sánchez-Martín MJ (2007) Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants. Sci Total Environ 382(1):82–92

    Article  PubMed  Google Scholar 

  • Ghosh S (2010) Wetland macrophytes as toxic metal accumulators. Int J Environ Sci 1(4):523

    Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 73–94

    Chapter  Google Scholar 

  • Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • He S, He Z, Yang X, Baligar VC (2012) Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv Agron 117:117–189

    Article  CAS  Google Scholar 

  • Herath I, Vithanage M (2015) Phytoremediation in constructed wetlands. In: Phytoremediation. Springer, Cham, pp 243–263

    Chapter  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124(1):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MB, Semme SA, Ahmed ASS, Hossain M, Porag GS, Parvin A, Sekar S (2021) Contamination levels and ecological risk of heavy metals in sediments from the tidal river Halda, Bangladesh. Arab J Geosci 14(3):1–12

    Article  Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DC, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1(7):366–381

    Article  Google Scholar 

  • Huang H, Zhang D, Zhao Z, Zhang P, Gao F (2017) Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation. J Clean Prod 141:429–438

    Article  CAS  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Schöftner P, Yousaf S, Wang A, Reichenauer TG (2018) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    Article  CAS  Google Scholar 

  • Jakovljević T, Radojčić-Redovniković I, Laslo A (2016) Phytoremediation of heavy metals: applications and experiences in croatia abstract. Zašt Mater 57(3):496–501

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55(1–2):110–119

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191(1–3):41–48

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Plant-microbe interactions in agro-ecological perspectives, pp 367–394

    Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Levchuk I, Màrquez JJR, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange–a review. Chemosphere 192:90–104

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang J, Zhu G, Liu Y, Wu B, Ng WJ, Tan SK (2016) Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland. Water Res 102:294–304

    Article  CAS  PubMed  Google Scholar 

  • Liang Zhu Y, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119(1):73–80

    Article  CAS  PubMed Central  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 27(14):16069–16085

    Article  CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Wu Y, Qiu J, Wang H, Yang L (2019) Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation. J Soils Sediments 19(2):702–715

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660

    Article  CAS  Google Scholar 

  • Marella TK, Saxena A, Tiwari A (2020) Diatom mediated heavy metal remediation: a review. Bioresour Technol 305:123068

    Article  Google Scholar 

  • Miller RR (1996) Phytoremediation—technology overview. Groundwater Remediation Technologies Analysis Center, Pittsburgh, PA

    Google Scholar 

  • Mishra S, Dwivedi SP, Singh RB (2010) A review on epigenetic effect of heavy metal carcinogens on human health. Open Nutraceuticals J 3(1):188

    CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    Article  CAS  Google Scholar 

  • Nedjimi B (2020) Germination characteristics of Peganum harmala L.(Nitrariaceae) subjected to heavy metals: implications for the use in polluted dryland restoration. Int J Environ Sci Technol 17(4):2113–2122

    Article  CAS  Google Scholar 

  • Odinga CA, Kumar A, Mthembu MS, Bux F, Swalaha FM (2019) Rhizofiltration system consisting of Phragmites australis and Kyllinga nemoralis: evaluation of efficient removal of metals and pathogenic microorganisms. Desalin Water Treat 169:120–132

    Article  Google Scholar 

  • Pilon-Smits EA, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Prieto MJ, Acevedo SOA, Prieto GF (2018) Phytoremediation of soils contaminated with heavy metals. Biodivers Int J 2(4):362–376

    Article  Google Scholar 

  • Pusz A, Wiśniewska M, Rogalski D (2021) Assessment of the accumulation ability of Festuca rubra L. and Alyssum saxatile L. tested on soils contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 10(5):46

    Article  Google Scholar 

  • Rahman MS, Hossain MB, Babu SOF, Rahman M, Ahmed AS, Jolly YN, Akter S (2019) Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Mar Pollut Bull 141:137–146

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39(10):2661–2664

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2014) Phytoremediation: mechanisms and adaptations. Soil Remediat Plants Prospect Challeng 85:85–105

    Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. In: Int conference on the environ hazards mitigation. Cairo Univ, Giza, pp 542–556

    Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2(4):178–191

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26(2):148–166

    Article  CAS  Google Scholar 

  • Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214

    Article  CAS  Google Scholar 

  • Singh R, Ahirwar NK, Tiwari J, Pathak J (2018) Review on sources and effect of heavy metal in soil: its bioremediation. Int J Res Appl Nat Soc Sci 2018:1–22

    CAS  Google Scholar 

  • Song WY, Ju Sohn E, Martinoia E, Jik Lee Y, Yang YY, Jasinski M, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914–919

    Article  CAS  PubMed  Google Scholar 

  • Soudek P, Tykva R, Vaněk T (2004) Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere 55(7):1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):1–11

    Article  Google Scholar 

  • Ugya AY, Ahmad AM, Adamu HI, Giwa SM, Imam TS (2019) Phytoextraction of heavy metals and risk associated with vegetables grown from soil irrigated with refinery wastewater. J Appl Biol Biotechnol 7(2):1–9

    Google Scholar 

  • Verma P, Rawat S (2021) Rhizoremediation of heavy metal-and xenobiotic-contaminated soil: an eco-friendly approach. In: Removal of emerging contaminants through microbial processes. Springer, Singapore, pp 95–113

    Chapter  Google Scholar 

  • Verma A, Roy A, Bharadvaja N (2021) Remediation of heavy metals using nanophytoremediation. In: Advanced oxidation processes for effluent treatment plants. Elsevier, pp 273–296

    Google Scholar 

  • Wang Y, Dong C, Xue Z, Jin Q, Xu Y (2016) De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii. Gene 576(1):126–135

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International scholarly research notices

    Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia. Environ Geochem Health 26(3):343–357

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, Breedon TMSP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23(5):507–514

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth, Vol 28, no 1. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 339–344

    Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22(1):299–302

    Google Scholar 

  • Zwolak I, Zaporowska H (2012) Selenium interactions and toxicity: a review. Cell Biol Toxicol 28(1):31–46

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sharma, S., Sharma, S., Kumar, A., Sharma, V. (2024). Phytoremediation: A Clean and Green Approach for Heavy Metal Remediation. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Microbial Applications for Environmental Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0676-1_15

Download citation

Publish with us

Policies and ethics