Skip to main content

Advertisement

Log in

Reduction of heavy metal load in food chain: technology assessment

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Industrialization and urbanization activities lead to extensive environmental problems and one of the most challenging problems is heavy metal contamination. Heavy metal is responsible for causing adverse effect on human health through food chain contamination. To minimize the effect, different methods are being used for decreasing heavy metal load into the food chain. Most of the traditional methods are either extremely costly or it simply isolate the contaminated site. A promising, relatively new technology for removal of heavy metal from contaminated sites is phytoremediation. There are numerous crops such as sunflower (Helianthus annus), maize (Zea mays), mustard (Brassica compestris), barley (Hordeum vulgare), beet (Beta vulgaris), bitter Gourd (Momordica charantia), brinjal (Solanum melongena), cauliflower (Brassica oleracea var. botrytis), chilli (Capsicum annum), coriander (Coriandrum sativum), fenugreek (Trigonella foenum-graecum), garlic (Alium sativum), ivy gourd (Coccinia indica), lufa (Luffa acutangula), lady’s finger (Abelmoschus esculentus), mint (Mentha piperata), radish (Raphanus sativus), spinach (Spinacia oleracea), tomato (Lycopersicom esculentum), and white gourd (Lagenaria vulgaris) used for remediation of heavy metal. The efficiency of the phytoremediation crops depends upon their biomass production and ability of metal accumulation in their harvestable organs. In addition to this there are some biotechnological approaches for enhancing the property of hyper accumulator plant for metal remediation. Various potential remediation techniques are available that can be used to reduce the heavy metal contamination. Research related to relatively new technology should be promoted and emphasized and expanded in developing countries where heavy metal pollution has already touched alarming level. In the above context present review deals with different approaches to reduce the availability of heavy metal from soil to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Tech 4(1):67–73

    CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. N Phytol 158(1):219–224

    Article  CAS  Google Scholar 

  • Aery NC, Rana DK (2003) Growth and cadmium uptake in barley under cadmium stress. J Environ Biol 24:117–123

    CAS  Google Scholar 

  • Ahmad P, Wani AE, Saghir MD, Khan AE, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26(5):225–227

    Article  CAS  Google Scholar 

  • Angelova VA, Radka Ivanova B, Galina Pevicharova C, Krasimir I (2010) Effect of organic amendments on heavy metals uptake by potato plants. In: 19th World congress of soil science, soil solutions for a changing world, 1–6 August 2010, Brisbane, Australia. Published on DVD

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Bakos F, Darkó E, Ascough G, Gáspár L, Ambrus H, Barnabás B (2008) A cytological study on aluminium-treated wheat anther cultures resulting in plants with increased Al tolerance. Plant Breed 127(3):235–240

    Article  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon-Smits EA, Mackey B (2005) Field trial of transgenic indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39(6):1771–1777

    Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterje C (2000) Distribution of heavy metals in wheat, mustard and weed grown in field irrigated with industrial. Bull Environ Contam Toxicol 64:489–496

    Article  CAS  Google Scholar 

  • Bennett LS, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32(2):432–440

    Article  CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate Zn2+ stress. Environ Int 31(2):251–254

    Article  CAS  Google Scholar 

  • Boonyapookana B, Parkpian P, Techapinyawat S, Delaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annus), tobacco (Nicotiana tabacum) and vetiver (Vetiveria zizanioides). J Environ Sci Health A Toxic/Hazardous Substances Environ Eng 40:117–137

    Article  CAS  Google Scholar 

  • Brown SL, Henry CL, Chaney RL, Compton H, DeVolder PS (2003) Using municipal biosolids in combination with other residuals to restore metal contaminated mining areas. Plant Soil 249:203–215

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64(3):3663–3668

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Baker AngleJS, JM A (1997) Phytoremediation of soil metals. Curr Opinions Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KU, Roseberg R, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd, Z. Nature forsch 60:190–198

    CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: Recent advances and new possibilities. Environ Sci Tech 39:9370–9390

    Google Scholar 

  • Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soil using earthworms and chemical extractions. J Environ Qual 30:1231–1237

    Article  CAS  Google Scholar 

  • Danika L, Norman LDT (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–573

    Article  Google Scholar 

  • Dembitsky V (2003) Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci 165:1177–1192

    Article  CAS  Google Scholar 

  • Deng DM, Shu WS, Zhang J, Zou HL, Ye ZH, Wong MH, Lin Z (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147:381–386

    Article  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC, Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276(33):9297–9302

    Article  CAS  Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    Article  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for the use of phytoremediation. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York

    Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soils. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Fuhrmann M, Lasat MM, Ebbs SD, Kochian LV, Cornish J (2002) Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. J Environ Qual 31(3):904–909

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I, Epelde L (2010) Heavy metal phytoremediation: microbial properties as bioindicators of soil health. Sci Topics. Retrieved December 31, 2010, from http://http://www.scitopics.Com/Heavy_metal_phytoremediation_microbial_properties_as_bioindicators_of_soil_health.html

  • Gisbert C, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R, Avino JNA (2003) Plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Grandlic CG, Palmer MW, Maier RM (2009) Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biol Biochem 41:1734–1740

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  Google Scholar 

  • Gupta AK, Sinha S (2006a) Phytoextraction capacity of the Chenopodium album L. growing on soil amended with tannery sludge. Bioresour Technol 98(2):442–446

    Google Scholar 

  • Gupta AK, Sinha S (2006b) Chemical fractionation and heavy metals accumulation in the plants of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64:161–173

    Article  CAS  Google Scholar 

  • Gupta AK, Sinha S (2006c) Role of Brassica juncea (L.) Czern. in the phytoremediation of metals from soil amended with fly ash: selection of extractant. J Hazard Mater 136(2):371–378

    Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contamin Toxicol 73:424–431

    Article  CAS  Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova, M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127

    Google Scholar 

  • Hamer DH (1986) Metallothioneins. Ann Rev Biochem 55:913–951

    Article  CAS  Google Scholar 

  • Handique GK, Handique AK (2009) Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. J Environ Biol 30:299–302

    CAS  Google Scholar 

  • He ZL, Yanga XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elements Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (2005) Physiological responses of transgenic merA-tobacco (Nicotiana tabacum) to foliar and root mercury exposure. Water Air Soil Poll 161:137–155

    Article  CAS  Google Scholar 

  • Herawati N, Susuki S, Hayashi K, Rivai IE, Koyama H (2000) Cadmium copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Hodson ME (2010) The need for sustainable soil remediation. Elements 6(6):363–368

    Article  CAS  Google Scholar 

  • IAEA (International atomic energy agency) (2006) Remediation of sites with mixed contamination of radioactive and other hazardous substances. Technical reports series no. 442

  • Islam EU, Yang X, He Z, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    Article  CAS  Google Scholar 

  • James CA, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20(2):237–241

    Article  CAS  Google Scholar 

  • Jiang J, Wu L, Li N, Luo Y, Liu L, Zhao Q, Zhang L, Christie P (2010) Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Euro J Soil Biol 46(1):18–26

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR (2010) Organic amendments for remediation: putting waste to good use. Elements 6(6):369–374

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton

  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic-accumulating, hypertolerant Brassica isatis, Cappadocica. New Phytol 184:41–47

    Article  CAS  Google Scholar 

  • Khan SU, Moheman A (2006) Effect of heavy metals (Cadmium and Nickel) on the seed germination, growth and metals uptake by chilli (Capsicum frutescens) and sunflower plants (Helianthus annuus). Pollut Res 25(1):99–104

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Koo SY, Cho KS (2009) Isolation and characterization of a plant growth-promoting rhizobacterium Serratia sp. SY5. J Microbiol Biotechnol 19:1431–1438

    CAS  Google Scholar 

  • Kos B, Lestan D (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut 132:333–339

    Article  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Krupa Z (1988) Cadmium-induced changes in the composition and structure of light harvesting complex II in radish cotyledons. Plant Physiol 73:518–524

    Article  CAS  Google Scholar 

  • Kumar JIN, Soni H, Kumar RN, Bhat I (2009) Hyperaccumulation and mobility of heavy metal in vegetable crops in India. J Agri Environ 10:29–38

    Google Scholar 

  • Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Google Scholar 

  • Lee JH, Hossner LR, Attrep MJ, Kung KS (2002) Uptake and translocation of plutonium in two plant species using hydroponics. Environ Pollut 117:61–68

    Article  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45(12):1787–1797

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulator versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) phytoremediation of heavy metal polluted soils and water: progress and perspectives. J Zhejiang Univ Sci B 9:210–220

    Article  CAS  Google Scholar 

  • Luan Y (2009) Application of hyperaccumulators in the phytoremediation of heavy metals-contaminated soils. Beijing research center for afrifood testing and farmland monitoring, ATFM

    Google Scholar 

  • Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2007) Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process. Int J Phytorem 9:181–196

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Madhava KVR, Sresty TVS (2000) Antioxidative parameters in the seedling of pegion pea (Cajanus cajanus (L) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • McBride MB (2003) Toxic metals in sewage sludge-amended soils: has proportion of beneficial use discounted the risks? Adv Environ Res 8:5–19

    Article  CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–219

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  Google Scholar 

  • Moreno-Caselles J, Moral R, Pere-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutri 23:243–250

    Article  CAS  Google Scholar 

  • Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. App Microbiol Biotechnol 87(2):781–786

    Article  CAS  Google Scholar 

  • Nagh WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from waste water by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  CAS  Google Scholar 

  • Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by non toxic washing agents. J Environ Qual 32:899–908

    Article  CAS  Google Scholar 

  • O’Day PA, Vlassopoulos D (2010) Mineral-based amendments for remediation. Elements 6(6):375–381

    Article  CAS  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus—a phytoremediation study. J Environ Biol 28:655–662

    CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  CAS  Google Scholar 

  • Paulose B, Datta SP, Rattan RK, Chhonkar PK (2007) Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ Pollut 146:19–24

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Over expression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    Article  CAS  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M, Singh R (2004) UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant level and antioxidative enzyme activities of Riccia sp. Acta Physiol Plant 26(4):423–430

    Article  CAS  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynth 43(2):177–185

    Article  CAS  Google Scholar 

  • Pueyo M, Rauret G, Luck D, Yli-Halla M, Muntau H, Quevauville P, Lopez-Sanchez JF (2001) Assessment of CaCl2, NH4NO3 and NaNO3 extraction procedures for the study of Cd, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees: a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Razo I, Carrizales L, Castro J, Diazbarrigs F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  CAS  Google Scholar 

  • Rohan JD, Varun M, Masih J, Paul MS (2010) Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metal from contaminated soils in Urban North Central India. J Hazard Mat 184:457–464

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metal from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Sêkara A, Poniedzialek M, Ciura J, Jêdrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish J Environ Studies 14:509–516

    Google Scholar 

  • Selvam A, Wong JW (2008) Phytochelatin systhesis and cadmium uptake of Brassica napus. Environ Technol 29:765–773

    Article  CAS  Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  Google Scholar 

  • Singh KP, Mohan D, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated waste water toxicants discharged by sewage treatment plants on health agricultural and environmental quality in the waste water disposal area. Chemosphere 55:227–255

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall F (2009) Effects of waste water irrigation on physicochemical properties of soil and availability of heavy metals in soil and vegetables. Commun Soil Sci Plant Anal 40:3469–3490

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall F (2010a) Health risk assessment of heavy metals via dietary intake of foodstuffs from the waste water irrigated site of a dry tropical area of India. Foof Chem Toxicol 48:611–619

    Article  CAS  Google Scholar 

  • Singh A, Agrawal M, Marshall F (2010b) The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecol Eng 36:1733–1740

    Article  Google Scholar 

  • Singh J, Upadhayay SK, Pathak RK, Gupta V (2011) Accumulation of heavy metal in soil and paddy crop (Oryza sativa),irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicol Environ Chem. doi:10.1080/02772248. 2010.546550

  • Stuczynski T, Siebielec G, Daniels W, McCarty G, Chaney R (2007) Biological aspects of metal waste reclamation with biosolids. J Environ Qual 36:1154–1162

    Article  CAS  Google Scholar 

  • Su DC, Wong JWC (2003) Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly-ash stabilized sewage sludge. Environ Int 29:895–900

    Article  CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  Google Scholar 

  • Tang YT, Qiu RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata. Franch Environ Exp Bot 66:126–134

    Article  CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  CAS  Google Scholar 

  • United States Protection Agency (USPA) (2000) Introduction to phytoremediation. EPA 600/R-99/107. U.S. environmental protection agency. Office of Research and Development, Cincinnati

    Google Scholar 

  • Upadhyay RK, Panda SK (2009) Copper induced growth inhibition, oxidative stress and ultrastructure alterations in freshly grown water lettuce (Pistia stratiotes L.). Comptes Rendus Biol 332(7):623–632

    Google Scholar 

  • Vandenhove H, van Hees M, van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytorem 3:301–320

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Drobne L, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  Google Scholar 

  • Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize (Zea mays L.). A review. Afr J Gen Agri 6(4):275–287

    Google Scholar 

  • Yadav SS, Shukla R, Sharma YK (2009) Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron. J Environ Biol 30(3):461–466

    CAS  Google Scholar 

  • Yan Z, Zia H (2010). Evaluation of the phytoremediation potential of sugarcane for metal-contaminated soils. In: Bioinformatics and biomedical engineering (iCBBE), 2010 4th international conference, pp 1–4

  • Yan-de J, Zhen-li HE, Xiao-e Y (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, Cu and Zn in plants and hyperaccumulator choice in lanping lead-zinc mine area, China. Environ Int 30:567–576

    Article  CAS  Google Scholar 

  • Yordanova R, Maslenkova L, Paunova S, Popova L (2009) Sensitivity of photosynthesis of photosynthetic apparatus of pea plants to heavy metal stress. In: XI anniversary scientific conference. Biotechnol and Biotechnol E.Q. 23/2009/SE

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zeng-YH ShawWS, Hung YL, Horng YG, Ting CC, Zueng SC (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutri 56:31–52

    Article  CAS  Google Scholar 

  • Zheng RL, Li HF, Jiang RF, Zhang FS (2008) Cadmium accumulation in the edible parts of different cultivars of radish (Raphanus sativus L.) and carrot, (Daucus carota) var. sativa, Grown in a Cd-contaminated Soil. Bull Environ Contam Toxicol 81:75–79

    Article  CAS  Google Scholar 

  • Zhen-Guo S, Xian-Dong L, Chun–Chun W, Huai-Man Ch, Hong Ch (2002) Lead phytoextraction from contaminated soil with high biomass plant species. J Environ Qual 31:1893–1900

    Article  Google Scholar 

  • Zhou YF, Haynes RJ (2010) Sorption of Heavy Metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Tech Vol 40(11):909–977

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the University of Allahabad for providing necessary facilities and thanks are due to UGC, India for providing grants to Dr Anita Singh as UGC-Dr D.S.Kothari Post Doctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Prasad, S.M. Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10, 199–214 (2011). https://doi.org/10.1007/s11157-011-9241-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9241-z

Keywords

Navigation